495 research outputs found

    Controlling Process Variables in 3D Printing to Limit the Energy Consumption

    Get PDF
    This study looked at effective energy usage and renewable resources to make 3D printing more environmentally friendly. The use of bio-based materials and the investigation of technological aspects that maximized the mechanical properties of 3D-printed products and assured energy cost savings were the adopted strategies. Two bio-based thermoplastics made from pure and filled polylactide acid (PLA) with wood were examined. These filaments were printed by changing the extruder temperature (from 190 to 220°C, respectively) and the printing speed (from -30% to +30% of default value) to verify the actual process conditions that allow the material to be extruded for a given printer apparatus. A dynamic mechanical analysis was performed on developed specimens. The energy consumption, to heat and melt the thermoplastics, for every combination of processing variables, was calculated. Results allowed to attest that storage modulus of printed parts and the amount of energy spent during printing were more affected by printing speed than by extruder temperatures. Particularly in the case of PLA+WOOD, by doubling the printing speed, the productivity increased by 37% despite a 30% rise in energy usage. The mechanical properties and printing accuracy did not appear to be severely impacted by an increase in printing speed from 70 to 130 mm/s at least for simple geometries and small sample sizes

    One-Year Outcomes after Surgical versus Transcatheter Aortic Valve Replacement with Newer Generation Devices

    Get PDF
    The superiority of transcatheter (TAVR) over surgical aortic valve replacement (SAVR) for severe aortic stenosis (AS) has not been fully demonstrated in a real-world setting. This prospective study included 5706 AS patients who underwent SAVR from 2010 to 2012 and 2989 AS patients who underwent TAVR from 2017 to 2018 from the prospective multicenter observational studies OBSERVANT I and II. Early adverse events as well as all-cause mortality, major adverse cardiac and cerebrovascular events (MACCEs), and hospital readmission due to heart failure at 1-year were investigated. Among 1008 propensity score matched pairs, TAVR was associated with significantly lower 30-day mortality (1.8 vs. 3.5%, p = 0.020), stroke (0.8 vs. 2.3%, p = 0.005), and acute kidney injury (0.6 vs. 8.2%, p < 0.001) compared to SAVR. Moderate-to-severe paravalvular regurgitation (5.9 vs. 2.0%, p < 0.001) and permanent pacemaker implantation (13.8 vs. 3.3%, p < 0.001) were more frequent after TAVR. At 1-year, TAVR was associated with lower risk of all-cause mortality (7.9 vs. 11.5%, p = 0.006), MACCE (12.0 vs. 15.8%, p = 0.011), readmission due to heart failure (10.8 vs. 15.9%, p < 0.001), and stroke (3.2 vs. 5.1%, p = 0.033) compared to SAVR. TAVR reduced 1-year mortality in the subgroups of patients aged 80 years or older (HR 0.49, 95% CI 0.33-0.71), in females (HR 0.57, 0.38-0.85), and among patients with EuroSCORE II >= 4.0% (HR 0.48, 95% CI 0.32-0.71). In a real-world setting, TAVR using new-generation devices was associated with lower rates of adverse events up to 1-year follow-up compared to SAVR

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Predicting the Printability of Poly(Lactide) Acid Filaments in Fused Deposition Modeling (FDM) Technology: Rheological Measurements and Experimental Evidence

    No full text
    In this work, the authors aimed to identify a potential correlation between the printability and crucial rheological characteristics of materials involved in fused deposition modeling (FDM) technology. In this regard, three different poly(lactide) acid (PLA)-based filaments (two commercially available (here called V-PLA and R-PLA) and one processed in a lab-scale extruder (here called L-PLA)) have been considered. Dynamic rheological testing, in terms of frequency sweep at five different temperatures (130, 150, 170, 190, and 210 &deg;C), was performed. Rheological properties expressed in terms of viscoelastic moduli and complex viscosity curves vs. frequency, characteristic relaxation times, activation energy (Ea), zero shear viscosity (&eta;0) and shear thinning index (n) were derived for each material. A characteristic relaxation time of around 0.243 s was found for V-PLA, a similar value (0.295 s) was calculated for R-PLA filaments, and a lower value of about an order of magnitude was calculated for L-PLA filament (~0.0303 s). The activation energy and shear thinning index resulted to be very comparable for all the filaments. On the contrary, V-PLA and R-PLA possessed a zero-shear viscosity (~104 Pa*s at 170 &deg;C) much higher than L-PLA (~103 Pa*s). All the filaments were processed in a 3D printer, by attesting the effect of nozzle temperature (180, 190, and 210 &deg;C, respectively) on printing process, and macroscopic shaping defects in printed objects. Final considerations allowed us to conclude that polymer relaxation time, zero-shear viscosity, and melt viscosity (affected by printing temperature) were critical parameters affecting the printing quality

    Predicting the Printability of Poly(Lactide) Acid Filaments in Fused Deposition Modeling (FDM) Technology: Rheological Measurements and Experimental Evidence

    No full text
    In this work, the authors aimed to identify a potential correlation between the printability and crucial rheological characteristics of materials involved in fused deposition modeling (FDM) technology. In this regard, three different poly(lactide) acid (PLA)-based filaments (two commercially available (here called V-PLA and R-PLA) and one processed in a lab-scale extruder (here called L-PLA)) have been considered. Dynamic rheological testing, in terms of frequency sweep at five different temperatures (130, 150, 170, 190, and 210 °C), was performed. Rheological properties expressed in terms of viscoelastic moduli and complex viscosity curves vs. frequency, characteristic relaxation times, activation energy (Ea), zero shear viscosity (η0) and shear thinning index (n) were derived for each material. A characteristic relaxation time of around 0.243 s was found for V-PLA, a similar value (0.295 s) was calculated for R-PLA filaments, and a lower value of about an order of magnitude was calculated for L-PLA filament (~0.0303 s). The activation energy and shear thinning index resulted to be very comparable for all the filaments. On the contrary, V-PLA and R-PLA possessed a zero-shear viscosity (~104 Pa*s at 170 °C) much higher than L-PLA (~103 Pa*s). All the filaments were processed in a 3D printer, by attesting the effect of nozzle temperature (180, 190, and 210 °C, respectively) on printing process, and macroscopic shaping defects in printed objects. Final considerations allowed us to conclude that polymer relaxation time, zero-shear viscosity, and melt viscosity (affected by printing temperature) were critical parameters affecting the printing quality

    Recovery of Waste Material from Biobags: 3D Printing Process and Thermo-Mechanical Characteristics in Comparison to Virgin and Composite Matrices

    No full text
    The purpose of this study is to limit the environmental impact of packaging applications by promoting the recycling of waste products and the use of sustainable materials in additive manufacturing technology. To this end, a commercial polylactide acid (PLA)-based filament derived from waste production of bio-bags is herein considered. For reference, a filament using virgin PLA and one using a wood-based biocomposite were characterized as well. Preliminary testing involved infrared spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The effect of printing parameters (namely bed temperature, layer thickness, top surface layers, retraction speed, and distance) on the final aesthetics of 3D printed parts was verified. The results allow us to attest that the thermal properties of recycled polymer are comparable to those of virgin PLA and biocomposite. In the case of recycled polymer, after the extrusion temperature, bed temperature, and printing speed are estabilished the lowest allowable layer thickness and an appropriate choice of retraction movements are required in order to realize 3D-printed objects without morphological defects visible to the naked eyes. In the case of wood biocomposite, the printing process was complicated by frequent obstructions, and in none of the operating conditions was it possible to obtain an aesthetically satisfying piece of the chosen geometry (Lego-type bricks) Finally, mechanical testing on the 3D printed parts of each system showed that the recycled PLA behaves similarly to virgin and wood/PLA filaments
    • 

    corecore