7 research outputs found

    Lipids and Small Molecules Affect α-synuclein Association and Disruption of Nanodiscs

    Full text link
    Lipid membranes have recently been implicated in protein misfolding and disease etiology, including for α-synuclein and Parkinson’s Disease. However, it is challenging to study the intersection of protein complex formation, membrane interactions, and bilayer disruption simultaneously. In particular, the efficacies of small molecule inhibitors for toxic protein aggregation are not well understood. Here, we used native mass spectrometry in combination with lipid nanodiscs to study α-synuclein-membrane interactions. α-synuclein did not interact with zwitterionic DMPC lipids but interacted strongly with anionic DMPG lipids, eventually leading to membrane disruption. Unsaturated POPG lipid nanodiscs were also prone to bilayer disruption, releasing α-synuclein:POPG complexes. Interestingly, the fibril inhibitor, (-)-epigallocatechin gallate (EGCG), prevented membrane disruption but did not prevent the incorporation of α-synuclein into nanodisc complexes. Thus, although EGCG inhibits fibrilization, it does not inhibit α-synuclein from associating with the membrane

    Assembly of Model Membrane Nanodiscs for Native Mass Spectrometry

    Full text link
    Native mass spectrometry (MS) with nanodiscs is a promising technique for characterizing membrane protein and peptide interactions in lipid bilayers. However, prior studies have used nanodiscs made of only one or two lipids, which lack the complexity of a natural lipid bilayer. To better model specific biological membranes, we developed model mammalian, bacterial, and mitochondrial nanodiscs with up to four different phospholipids. Careful selection of lipids with similar masses that balance the fluidity and curvature enabled these complex nanodiscs to be assembled and resolved with native MS. We then applied this approach to characterize the specificity and incorporation of LL-37, a human antimicrobial peptide, in single lipid nanodiscs versus model bacterial nanodiscs. Overall, development of these model membrane nanodiscs reveals new insights into the assembly of complex nanodiscs and provides a useful toolkit for studying membrane protein, peptide, and lipid interactions in model biological membranes

    Surface Modified Nano-Electrospray Needles Improve Sensitivity for Native Mass Spectrometry

    Full text link
    Native mass spectrometry (MS) and charge detection-mass spectrometry (CD-MS) have become versatile tools for characterizing a wide range of proteins and macromolecular complexes. Both commonly use nano-electrospray ionization (nESI) from pulled borosilicate needles, but some analytes are known to nonspecifically adsorb to the glass, which may lower sensitivity and limit the quality of the data. To improve the sensitivity of native MS and CD-MS, we modified the surface of nESI needles with inert surface modifiers, including polyethylene-glycol. We found that the surface modification improved the signal intensity for native MS of proteins and for CD-MS of adeno-associated viral capsids. These surface modified needles provide a simple and inexpensive method for improving the sensitivity of challenging analytes

    UniDecCD: Deconvolution of Charge Detection-Mass Spectrometry Data

    Full text link
    Native mass spectrometry (MS) has become a versatile tool for characterizing high-mass complexes and measuring biomolecular interactions. Native MS usually requires resolution of different charge states produced by electrospray ionization to measure the mass, which is difficult for highly heterogeneous samples that have overlapping and unresolvable charge states. Charge detection-mass spectrometry (CD-MS) seeks to address this challenge by simultaneously measuring the charge and m/z for isolated ions. However, CD-MS often shows uncertainty in the charge measurement that limits the resolution. To overcome this charge state uncertainty, we developed UniDecCD (UCD) software for computational de-convolution of CD-MS data, which significantly improves the resolution of CD-MS data. Here, we describe the UCD algorithm and demonstrate its ability to improve CD-MS resolution of proteins, megadalton viral capsids, and heterogeneous nanodiscs made from natural lipid extracts. UCD provides a user-friendly interface that will increase the accessibility of CD-MS technology and provide a valuable new computational tool for CD-MS data analysis

    Stratified analyses refine association between TLR7 rare variants and severe COVID-19

    Full text link
    Summary: Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.4% of young (<60 years) cases with no reported clinical risk factors (n = 378), compared to 0.24% of controls (odds ratio [OR] = 12.3, p = 1.27 × 10−10). Incorporation of the results of either functional assays or protein modeling led to a pronounced increase in effect size (ORmax = 46.5, p = 1.74 × 10−15). Association signals for the X-chromosomal gene TLR7 were also detected in the female-only subgroup, suggesting the existence of additional mechanisms beyond X-linked recessive inheritance in males. Additionally, supporting evidence was generated for a contribution to severe COVID-19 of the previously implicated genes IFNAR2, IFIH1, and TBK1. Our results refine the genetic contribution of rare TLR7 variants to severe COVID-19 and strengthen evidence for the etiological relevance of genes in the interferon signaling pathway
    corecore