19 research outputs found

    Experimental signature of Quantum Darwinism in photonic cluster states

    Get PDF
    We report on an experimental assessment of the emergence of Quantum Darwinism (QD) from engineered open-system dynamics. We use a photonic hyperentangled source of graph states to address the effects that correlations among the elements of a multi-party environment have on the establishment of objective reality ensuing the quantum-to-classical transition. Besides embodying one of the first experimental efforts towards the characterization of QD, our work illustrates the non-trivial consequences that multipartite entanglement and, in turn, the possibility of having environment-to-system back-action have on the features of the QD framework.Comment: 5 pages, 5 figures, Revtex4-

    Experimental generation of entanglement from classical correlations via non-unital local noise

    Full text link
    We experimentally show how classical correlations can be turned into quantum entanglement, via the presence of non-unital local noise and the action of a CNOT gate. We first implement a simple two-qubit protocol in which entanglement production is not possible in the absence of local non-unital noise, while entanglement arises with the introduction of noise, and is proportional to the degree of noisiness. We then perform a more elaborate four-qubit experiment, by employing two hyperentangled photons initially carrying only classical correlations. We demonstrate a scheme where the entanglement is generated via local non-unital noise, with the advantage to be robust against local unitaries performed by an adversary.Comment: 8 pages, 4 figure

    Quantum-enhanced multiparameter estimation in multiarm interferometers

    Get PDF
    Quantum metrology is the state-of-the-art measurement technology. It uses quantum resources to enhance the sensitivity of phase estimation beyond what reachable within classical physics. While single parameter estimation theory has been widely investigated, much less is known about the simultaneous estimation of multiple phases, which finds key applications in imaging and sensing. In this manuscript we provide conditions of useful entanglement (among multimode particles, qudits) for multiphase estimation and adapt them to multiarm Mach-Zehnder interferometry. We discuss benchmark multimode Fock states containing useful qudit entanglement and overcoming the sensitivity of separable qudit states in three and four arm Mach-Zehnder-like interferometers - currently within the reach of integrated photonics technology.Comment: 7+3 pages, 4+2 figure

    Path-polarization hyperentangled and cluster states of photons on a chip

    Get PDF
    Encoding many qubits in different degrees of freedom (DOFs) of single photons is one of the routes towards enlarging the Hilbert space spanned by a photonic quantum state. Hyperentangled photon states (i.e. states showing entanglement in multiple DOFs) have demonstrated significant implications for both fundamental physics tests and quantum communication and computation. Increasing the number of qubits of photonic experiments requires miniaturization and integration of the basic elements and functions to guarantee the set-up stability. This motivates the development of technologies allowing the precise control of different photonic DOFs on a chip. We demonstrate the contextual use of path and polarization qubits propagating within an integrated quantum circuit. We tested the properties of four-qubit linear cluster states built on both DOFs. Our results pave the way towards the full integration on a chip of hybrid multiqubit multiphoton states.Comment: 7 pages, 7 figures, RevTex4-1, Light: Science & Applications AAP:http://aap.nature-lsa.cn:8080/cms/accessory/files/AAP-lsa201664.pd

    Experimental nonlocality-based network diagnostics of mutipartite entangled states

    Get PDF
    Quantum networks of growing complexity play a key role as resources for quantum computation; the ability to identify the quality of their internal correlations will play a crucial role in addressing the buiding stage of such states. We introduce a novel diagnostic scheme for multipartite networks of entangled particles, aimed at assessing the quality of the gates used for the engineering of their state. Using the information gathered from a set of suitably chosen multiparticle Bell tests, we identify conditions bounding the quality of the entangled bonds among the elements of a register. We demonstrate the effectiveness, flexibility, and diagnostic power of the proposed methodology by characterizing a quantum resource engineered combining two-photon hyperentanglement and photonic-chip technology. Our approach is feasible for medium-sized networks due to the intrinsically modular nature of cluster states, and paves the way to section-by-section analysis of large photonics resources.Comment: 5 pages, 3 figures, RevTex4-

    Optimal measurements for simultaneous quantum estimation of multiple phases

    Get PDF
    A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation
    corecore