5 research outputs found

    Contrasting population trends of Common Starlings (Sturnus vulgaris) across Europe

    Get PDF
    The greatest loss of biodiversity in the EU has occurred on agricultural land. The Common Starling (Sturnus vulgaris) is one of the many numerous and widespread European farmland breeding bird species showing major population declines linked to European agricultural intensification. Here we present results based on monitoring data collected since 1975 in 24 countries to examine the influence of changing extent of grassland and cattle abundance (based on results of earlier studies showing the importance of lowland cattle grazed grassland for the species), wintering provenance and temperature on national breeding population trends of Starlings across Europe. Positive Starling population trends in Central-East Europe contrast with negative trends in North and West Europe. Based on this indicative approach, we found some support for the importance of cattle stock and no support for grassland, temperature or wintering provenance to explain Starling population trends in Europe. However, we acknowledge such a European-wide analysis may conceal regional differences in responses and suggest that currently accessible national land use datamight be insufficient to describe the detailed current changes in animal husbandry and grassland management that may be responsible for changes in food availability and hence breeding Starling abundance and their differences across Europe. Reviewing results from local studies relating Starling population trends to local agricultural change offer contradictory results, suggesting complex interacting processes at work. We recommend combining national datasets on demography, land-use/agricultural practices and from autecological research to better explain the reasons for contrasting Starling trends across Europe, to enable us to predict how changing agriculture will affect Starlings and potentially suggest mitigation measures to restore local populations where possible.Peer reviewe

    The European union’s 2010 target: Putting rare species in focus

    Get PDF
    P. 167-185The European Union has adopted the ambitious target of halting the loss of biodiversity by 2010. Several indicators have been proposed to assess progress towards the 2010 target, two of them addressing directly the issue of species decline. In Europe, the Fauna Europaea database gives an insight into the patterns of distribution of a total dataset of 130,000 terrestrial and freshwater species without taxonomic bias, and provide a unique opportunity to assess the feasibility of the 2010 target. It shows that the vast majority of European species are rare, in the sense that they have a restricted range. Considering this, the paper discusses whether the 2010 target indicators really cover the species most at risk of extinction. The analysis of a list of 62 globally extinct European taxa shows that most contemporary extinctions have affected narrow-range taxa or taxa with strict ecological requirements. Indeed, most European species listed as threatened in the IUCN Red List are narrow-range species. Conversely, there are as many wide-range species as narrow-range endemics in the list of protected species in Europe (Bird and Habitat Directives). The subset of biodiversity captured by the 2010 target indicators should be representative of the whole biodiversity in terms of patterns of distribution and abundance. Indicators should not overlook a core characteristic of biodiversity, i.e. the large number of narrow-range species and their intrinsic vulnerability. With ill-selected indicator species, the extinction of narrowrange endemics would go unnoticedS

    Investigating orphan cytochromes P450 from Mycobacterium tuberculosis : the search for potential drug targets

    Get PDF
    Tuberculosis (TB) is a disease that the World Health Organisation (WHO) regards as a global pandemic. There is a great need for new drugs to combat this threat. Drug resistant strains of the causative agent, Mycobacterium tuberculosis (Mtb), have increased the urgency of this quest for novel anti-mycobacterial medicines. Publication of the Mtb genome sequence revealed a large number of cytochrome P450 (CYP) enzymes [Cole, S. T. et al. 1998]. These mono-oxygenase enzymes have been studied for many years and are responsible for metabolic functions in every kingdom of life. Research on the Mtb P450s to date has highlighted several of them as having critcal roles within the organism. CYP121 and CYP128 have been implicated as essential through gene knockout studies. It has been demonstrated that CYP125 is not essential for viability. However, it is part of a gene cluster highly important for Mtb infectivity and virulence. Due to the prospective importance of P450s to Mtb, this group of enzymes is under investigation as a source of novel drug targets. CYP142 was discovered as a potential drug target after it was located to a gene cluster involved in cholesterol catabolism during Mtb dormancy. As part of this PhD project, it was demonstrated that CYP142 performs an almost identical role to that reported for CYP125. These enzymes both perform C27 hydroxylation and carboxylation of the cholesterol side chain. However, variations in the level of oxidation have been identified, dependent upon the redox system with which these P450s are associated. A crystal structure of CYP142 showing high similarity in active site architecture to CYP125 supports the physiological role of CYP142 in cholesterol catabolism. Combining this with in vitro data which demonstrates that CYP142 possesses high affinity for a range of azole anti-fungal agents [Ahmad, Z. et al. 2005, 2006] supports the suggestion that it is a candidate target for the next generation of anti-mycobacterial drugs. CYP144 was highlighted as being important during the latent phase of Mtb growth, a phase that is not targeted by any of the current antimycobacterials. Work performed as part of this PhD has shown that many characteristics of CYP144 are highly comparable to those reported for other MtbP450s. CYP144 shows high affinity and specificity towards many azole molecules. Econazole, clotrimazole and miconazole have repeatedly been shown to bind to MtbP450s, including CYP144 and CYP142, with high affinity and are excellent potential candidates as novel anti-mycobacterial agents. An N-terminally truncated form of CYP144, CYP144-T, has been investigated in the pursuit of a CYP144 crystal structure. It is hoped that this will enable the elucidation of a physiological role for CYP144. Both CYP142 and CYP144 have demonstrated biochemical and biophysical characteristics that contribute to our knowledge of P450 enzymes. This PhD has established that CYP142 exhibits an equilibrium between P450 and P420 species in its CO-bound, ferrous form. A conversion from P420, and stabilisation of P450, upon substrate binding was also demonstrated. CYP144 displays unusual azole coordination characteristics when examined by EPR and removal of the CYP144 gene from Mtb increased sensitivity of the strain to clotrimazole. Studies of these enzymes has advanced knowledge of P450 and Mtb redox chemistry, established roles for the MtbP450 cohort and identified the potential of anti-mycobacterial drugs and associated targets.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The European union’s 2010 target: Putting rare species in focus

    No full text
    corecore