15 research outputs found
Biomimetic hierarchical nanofibrous surfaces inspired by superhydrophobic lotus leaf structure for preventing tissue adhesions
Undesirable tissue adhesions remain one of the most common and dreaded postoperative complications. Biocompatible nanofibrous mats with antiadhesive surfaces represent a promising barrier method for preventing the formation of adhesions. The material developed in this work was inspired by the natural superhydrophobic lotus leaf nanostructure, which was mimicked by a unique combination of needleless electrospraying and electrospinning technology of poly-ε-caprolactone (PCL). The surface hydrophobicity of electrosprayed nanodroplets was further enhanced by cold plasma modification using the chemical vapor deposition (CVD) method with hexamethyldisiloxane (HMDSO). The treatment led to a successful decrease in surface wettability of our samples. Morphology (scanning electron microscopy), wettability (contact angle) and chemical composition (FTIR analysis) were observed for a period of six months to track possible changes; the obtained results verified the presence of HMDSO during the whole time period. Cytocompatibility was confirmed in vitro with 3T3 mouse fibroblasts according to the norm ISO 10993-5. Cell adhesion and proliferation were assessed in vitro by metabolic MTT assay and fluorescence microscopy after 4, 7, and 14 days. Antiadhesive behaviour was confirmed by atomic force microscopy and ex vivo by peel test 90° with intestinal tissue, the final structure has a great potential to reduce postoperative tissue adhesions
The effect of material and process parameters on the surface energy of polycaprolactone fibre layers
The experiment involved the study of differences between the surface energy of various fibrous layers. The experimental approach was based on changes in several parameters such as the concentration of the polymeric solution, differences in the molecular weight, the use of different solvents and the method applied for the preparation of the samples. All the experiments considered nanofibrous materials based on polycaprolactone that had been electrospun using the direct and alternating current electrospinning approaches. In addition, polymer foils from the spinning solutions were prepared as reference materials. The contact angle and surface energy were measured for all the prepared materials (foils and layers). The experiment led to the conclusion that the use of different solvent systems and the two electrospinning approaches produces materials with differing surface energies and, thus, with differing degrees of hydrophilicity/hydrophobicity of the produced fibre layers
Preparation of a Hydrogel Nanofiber Wound Dressing
The study addressed the production of a hydrogel nanofiber skin cover and included the fabrication of hydrogel nanofibers from a blend of polyvinyl alcohol and alginate. The resulting fibrous layer was then crosslinked with glutaraldehyde, and, after 4 h of crosslinking, although the gelling component, i.e., the alginate, crosslinked, the polyvinyl alcohol failed to do so. The experiment included the comparison of the strength and ductility of the layers before and after crosslinking. It was determined that the fibrous layer following crosslinking evinced enhanced mechanical properties, which acted to facilitate the handling of the material during its application. The subsequent testing procedure proved that the fibrous layer was not cytotoxic. The study further led to the production of a modified hydrogel nanofiber layer that combined polyvinyl alcohol with alginate and albumin. The investigation of the fibrous layers produced determined that following contact with water the polyvinyl alcohol dissolved leading to the release of the albumin accompanied by the swelling of the alginate and the formation of a hydrogel
The Combination of Hydrogels with 3D Fibrous Scaffolds Based on Electrospinning and Meltblown Technology
This study presents the advantages of combining three-dimensional biodegradable scaffolds with the injection bioprinting of hydrogels. This combination takes advantage of the synergic effect of the properties of the various components, namely the very favorable mechanical and structural properties of fiber scaffolds fabricated from polycaprolactone and the targeted injection of a hydrogel cell suspension with a high degree of hydrophilicity. These properties exert a very positive impact in terms of promoting inner cell proliferation and the ability to create compact tissue. The scaffolds were composed of a mixture of microfibers produced via meltblown technology that ensured both an optimal three-dimensional porous structure and sufficient mechanical properties, and electrospun nanofibers that allowed for good cell adhesion. The scaffolds were suitable for combination with injection bioprinting thanks to their mechanical properties, i.e., only one nanofibrous scaffold became deformed during the injection process. A computer numerical-control manipulator featuring a heated printhead that allowed for the exact dosing of the hydrogel cell suspension into the scaffolds was used for the injection bioprinting. The hyaluronan hydrogel created a favorable hydrophilic ambiance following the filling of the fiber structure. Preliminary in vitro testing proved the high potential of this combination with respect to the field of bone tissue engineering. The ideal structural and mechanical properties of the tested material allowed osteoblasts to proliferate into the inner structure of the sample. Further, the tests demonstrated the significant contribution of printed hydrogel-cell suspension to the cell proliferation rate. Thus, the study led to the identification of a suitable hydrogel for osteoblasts
The Optimization of Alternating Current Electrospun PA 6 Solutions Using a Visual Analysis System
The electrospinning process that produces fine nanofibrous materials have a major disadvantage in the area of productivity. However, alternating current (AC) electrospinning might help to solve the problem via the modification of high voltage signal. The aforementioned productivity aspect can be observed via a camera system that focuses on the jet creation area and that measures the average lifespan. The paper describes the optimization of polyamide 6 (PA 6) solutions and demonstrates the change in the behavior of the process following the addition of a minor dose of oxoacid. This addition served to convert the previously unspinnable (using AC) solution to a high-quality electrospinning solution. The visual analysis of the AC electrospinning of polymeric solutions using a high-speed camera and a programmable power source was chosen as the method for the evaluation of the quality of the process. The solutions were exposed to high voltage applying two types of AC signal, i.e., the sine wave and the step change. All the recordings presented in the paper contained two sets of data: firstly, camera recordings that showed the visual expression of electrospinning and, secondly, signal recordings that provided information on the data position in the signal function
Molecular differences in susceptibility of the kidney to sepsis-induced kidney injury
Abstract Background Septic acute kidney injury affects 40–50% of all septic patients. Molecular differences between septic patients with and without acute kidney injury (AKI) are only poorly understood. Here, we investigated gene expression changes that differentiated the subjects who developed septic AKI from those who did not and coupled this approach with traditional parameters of renal physiology. Methods In 15 anesthetized, mechanically ventilated and instrumented pigs, progressive sepsis was induced either by peritonitis or by continuous intravenous infusion of Pseudomonas aeruginosa. Animals received standard intensive care including goal-directed hemodynamic management. Analyses were performed on kidneys from sham operated animals, septic pigs without AKI, and pigs with septic AKI. Before, and at 12, 18 and 22 h of progressive sepsis, systemic and renal hemodynamics, cortex microcirculation and plasma IL-6 and TNF-α were measured. At 22 h whole kidney expression of pre-selected genes was analyzed by quantitative Real Time PCR. Results Animals with septic AKI had systemic hemodynamic phenotype (normo- or hyperdynamic) comparable with non-AKI subjects, but demonstrated higher plasma levels of cytokines, an increase in renal vascular resistance and early fall in cortical microcirculatory blood flow. The genes whose expression discriminated septic AKI from non-AKI included Toll like receptor 4 (up-regulated 2.7-fold, P = 0.04); Cyclooxygenase-2 (up-regulated 14.6-fold, P = 0.01), Angiotensin II Receptor (up-regulated 8.1-fold, P = 0.01), Caspase 3 (up-regulated 5.1-fold, P = 0.02), Peroxisome Proliferator-Activated Receptor Gamma, Coactivator 1 Alpha (down-regulated 2-fold, P = 0.02). Conclusions In this preliminary experimental study, kidney gene expression was profoundly different in animals that developed septic AKI as opposed to septic animals that did not. The biological functions of the genes differentially expressed support a role of inflammatory overstimulation coupled with metabolic and apoptotic molecular responses in early septic AKI. Cyclooxygenase-2 and angiotensin type 2 receptor-dependent downstream mechanisms appear fruitful targets for future mechanistic research
The Injection Molding of Biodegradable Polydioxanone—A Study of the Dependence of the Structural and Mechanical Properties on Thermal Processing Conditions
Recent years have observed a significant increase in the use of degradable materials in medicine due to their minimal impact on the patient and broad range of applicability. The biodegradable polymer Polydioxanone (PDO) provides a good example of the use of such one polymer that can represent the aforementioned medical materials in the field of medicine, due to its high level of biocompatibility and interesting mechanical properties. PDO is used to produce absorbable medical devices such as sutures and stents, and is also suitable for the fabrication of certain orthopedic implants. Polydioxanone can be processed using the injection molding method due to its thermoplastic nature; this method allows for the precise and easily-controllable production of medical materials without the need for toxic additives. A number of small commercial polymer implants have recently been introduced onto the market based on this processing method. It is important to note that, to date, no relevant information on the molding of PDO is available either for the scientific or the general public, and no study has been published that describes the potential of the injection molding of PDO. Hence, we present our research on the basic technological and material parameters that allow for the processing of PDO using the laboratory microinjection molding method. In addition to determining the basic parameters of the process, the research also focused on the study of the structural and mechanical properties of samples based on the thermal conditions during processing. A technological frame work was successfully determined for the processing of PDO via the microinjection molding approach that allows for the production of samples with the required homogeneity, shape stability and surface quality in a laboratory scale. The research revealed that PDO is a polymer with a major share of crystalline phases, and that it is sensitive to the annealing temperature profile in the mold, which has the potential to impact the final crystalline structure, the fracture morphology and the mechanical properties
Reinforcement of Colonic Anastomosis with Improved Ultrafine Nanofibrous Patch: Experiment on Pig
Anastomotic leakage is a dreadful complication in colorectal surgery. It has a negative impact on postoperative mortality, long term life quality and oncological results. Nanofibrous polycaprolactone materials have shown pro-healing properties in various applications before. Our team developed several versions of these for healing support of colorectal anastomoses with promising results in previous years. In this study, we developed highly porous biocompatible polycaprolactone nanofibrous patches. We constructed a defective anastomosis on the large intestine of 16 pigs, covered the anastomoses with the patch in 8 animals (Experimental group) and left the rest uncovered (Control group). After 21 days of observation we evaluated postoperative changes, signs of leakage and other complications. The samples were assessed histologically according to standardized protocols. The material was easy to work with. All animals survived with no major complication. There were no differences in intestinal wall integrity between the groups and there were no signs of anastomotic leakage in any animal. The levels of collagen were significantly higher in the Experimental group, which we consider to be an indirect sign of higher mechanical strength. The material shall be further perfected in the future and possibly combined with active molecules to specifically influence the healing process