8 research outputs found
Specifics of chemical technology of fuels and high-energy substances science-based course delivered in English
Teaching science-based courses in English is relevant for modern universities involved in the internationalization processes globally. Teaching aids development becomes very actual as academic culture and methods of teaching of the target audience - international students can be different. Thus curriculum design and teaching aids development for the science-based course Chemical Technology of Fuels and High-energy Substances delivered at TPU becomes an important issue. The level of training is PhD studies within specialty 05.17.07 Chemical Technology of Fuels and High Energy Substances. The course is intended for the subsequent sessions within the academic discipline of the professional training in English. The course embraces face-to-face sessions, independent studies, tasks and tools for formative and summative assessment of graduate students` progress
Development of Complex Mathematical Model of Light Naphtha Isomerization and Rectification Processes
The technique of developing a mathematical model of catalytic isomerization of light naphtha is stated Using experimental data from an industrial isomerization unit shows adequacy of the mathematical model to the real process. The paper presents a method for optimizing the operation of the plant together with catalytic isomerization unit and separation columns. Selection of optimal modes of separation columns allows achieving the desired flow separation between units, as well as extension of the life of the catalyst SI-2
Simulation of Light Naphtha Isomerization Process
An approach to modeling the isomerization process implemented in the technological scheme with the maximum normal paraffins conversion was described. The comprehensive mathematical model was designed as a powerful tool for optimization. It is based on the influence of the feedstock composition for assessment of the current catalyst activity. According to the calculations, the optimal operating parameters are determined by the refined feedstock composition
Efficiency Improvement of the Light Gasoline Fractions Isomerization by Mathematical Modeling
Optimization and forecasting of light gasoline fractions isomerization is a complex technological issue, as it includes a variety of factors and independent parameters. The most effective solution is to use the mathematical modeling method of physical and chemical laws of the process. In this paper, we propose a method of intensification of the combined fractionation and isomerization processes of pentane-hexane fraction with the aim to improve the service durability of the catalyst SI-2 on the L-35-11 / 300 production unit. The developed complex mathematical model takes into account the influence of the feedstock composition, allows for assessment of the catalyst current activity and it is also a powerful optimization tool. According to the survey results the optimizing the feedstock composition will increase the octane number of the isomerate at 1.6-2.2 points
Strategy of transition to advanced digital intellectual production technologies of catalytic processes of transformation of hydrocarbon raw materials
In the gasoline preparation process, various products are used, such as catalytic reforming, isomerization, hydrocracking, hydrodewaxing, catalytic cracking, liquidphase catalytic alkylation processes, as well as additives such as gasoline. As a result of the catalytic activity of a bifunctional catalyst in isomerization and aromatization reactions. The yield of liquid products (C[5+]), the composition of the reformate and the octane number can be adjusted by optimizing the independent variables (temperature, pressure, consumption of raw materials) or by adding different promoters to the reaction catalytic zone (water, chlorine). Optimization of this process is a very complex multi-stage technology for processing hydrocarbon feedstock into high-octane components, and increasing its efficiency reduces the cost of the product
Mathematical Modeling of the Process of Catalytic Hydrodewaxing of Atmospheric Gasoil Considering the Interconnection of the Technological Scheme Devices
The authors proposed a mathematical model of the reactor of hydrodewaxing process and methodology to address the relationship of processes and devices for predicting the hydrodewaxing reactor operation and the related apparatus - stabilization column of the gas-product mix in order to use them to predict resource-efficient modes of the equipment operation. The influence of the downstream stabilization column composition of raw materials and quality of stable hydrogenate in order to determine the optimal irrigation flow into the column to increase the separation of hydrogen sulfide and light hydrocarbons by the top of the column is shown
Development of a Two-Fluid Hydrodynamic Model for a Riser Reactor
ANSYS Fluent is used to examine the mixing of catalyst zeolite particles with petroleum feedstock and water vapor in a fluid catalytic cracking (FCC) riser. A two-fluid model is developed for tracking catalyst particles and gas mixture in a riser, modeling the granular and gaseous phases as two interpenetrating continua. The hydrodynamic flows are analyzed with the aim to single out the principal physical effects that determine the distribution of particles. The results are compared with a study that is based on a non-isothermal reactive model. It is demonstrated that the simplistic purely hydrodynamic model generates similar flow fields. The developed model is valuable for improvements of modern FCC risers. The model is applied for understanding the hydrodynamics of an S-200 KT-1/1 industrial unit
Engineering models of oil refining: increasing the efficiency of multi-stage gasoline production
Актуальность работы обусловлена необходимостью импортозамещения программного обеспечения в области проектирования, моделирования и оптимизации процессов подготовки и переработки нефти и газа. Практически все используемые на предприятиях нефтегазового сектора пакеты моделирующих систем представляют собой разработки США, Канады, Великобритании и других стран. В сложившихся условиях санкционных рисков по использованию импортного программного обеспечения для моделирования технологических процессов крайне актуальной задачей является разработка и быстрая адаптация инженерных математических моделей всех базовых процессов нефтепереработки, которые в дальнейшем станут основой российских импортозамещающих программных продуктов. В Национальном исследовательском Томском политехническом университете более 30 лет проводятся исследования процессов получения моторных топлив, на основании которых разработаны надежные математические модели таких технологий, как каталитический риформинг бензинов, изомеризация пентангексановой фракции углеводородов, каталитический крекинг вакуумного дистиллята и смесевого нефтяного сырья, гидропереработки нефтяных фракций, компаундирование высокооктановых бензинов и других. Отличительной особенностью разработанных математических моделей является то, что они, с одной стороны, построены на основе фактических промышленных данных по эксплуатации установок на различных НПЗ, а с другой, учитывают основные фундаментальные физико-химические закономерности механизмов реакций, дезактивации катализаторов, макрокинетические факторы процессов производства моторных топлив. Решение многокритериальной задачи оптимизации технологии приготовления моторных топлив (бензинов и дизельных топлив) возможно с применением метода математического моделирования на физико-химической основе, т. е. с учетом термодинамики и кинетики превращений углеводородов на поверхности катализатора, а также нестационарности протекания процессов ввиду закоксовывания, старения и отравления катализатора вредными примесями, изменения химического состава перерабатываемого сырья. Цель: разработка технических решений, направленных на повышение эффективности многостадийного производства бензинов с использованием инженерных моделей процессов нефтепереработки. Методы исследования базируются на использовании математического моделирования многокомпонентных процессов переработки углеводородного сырья. В качестве исходных данных использованы результаты хроматографического определения группового и индивидуального состава различных нефтяных фракций. Результаты. Выполнены оценка и прогнозирование влияния компонентного состава перерабатываемого сырья каталитического риформинга на качественные и количественные характеристики компонентов товарного бензина. Применение модели каталитического крекинга показало, что выход целевых продуктов процесса и активность катализатора выше на 4,9 и 6,7 % мас. при переработке сырья с более низким содержанием ароматических углеводородов и смол (29,9 и 1,6 % мас.), что связано со снижением содержания кокса на катализаторе на 0,15 % мас. Определен максимальный выход бензина для двух типов сырья (55,4 и 56,5 % мас.), который достигается при 536,0 и 534,0 °С, что объясняется их углеводородным составом. Выполнены прогнозные расчеты с оценкой влияния состава потока бензиновой фракции каталитического крекинга на рецептуру и качество получаемого товарного бензина при использовании более легкого сырья на установке крекинга. Показана возможность увеличения доли потока бензиновой фракции каталитического крекинга в рецептуру приготовления товарного бензина. Себестоимость производства моторного топлива в этом случае снижается на величину от 0,1 до 1,0 %.The relevance of this study is caused by the need for import substitution of software in the field of design, modeling and optimization of the gas and oil processing. Almost all software for modeling used at oil and gas entities are the developments of the USA, Canada, Great Britain and other countries. In the current conditions of sanctions risks on using imported software for modeling technological processes, the development and rapid adaptation of engineering mathematical models of all basic oil refining processes are an extremely urgent task. These models will further become the basis of Russian import-substituting software products. Over the course of 30 years, the National Research Tomsk Polytechnic University has been researching the processes of the motor fuels production. On the basis of these studies the reliable mathematical models have been developed for technologies such as catalytic reforming of gasoline, isomerization of the hydrocarbons pentane-hexane fraction, catalytic cracking of vacuum distillate and mixed petroleum feedstock, hydroprocessing of petroleum fractions, compounding of high-octane gasolines, and others. Distinctive features of the developed mathematical models are related to following: firstly, they are built on the basis of real industrial data on the operation units at various refineries and, secondly, they take into account the main fundamental physical and chemical laws of reaction mechanisms, the catalyst deactivation as well as the macrokinetic factors of motor fuel production processes. The solution of multicriteria problem of optimizing the technology of preparation of motor fuels (gasoline and diesel fuels) is possible using the method of mathematical modeling on a physical and chemical basis. This approach takes into account the thermodynamics and kinetics of hydrocarbon conversions on the catalyst surface, as well as the non-stationarity of the processes due to coking, aging and poisoning by harmful impurities of the catalyst, changes in the chemical composition of the feedstock. The aim of this study is to develop the technical solutions aimed at improving the efficiency of multi-stage gasoline production using the engineering models of oil refining processes. The method of the research is based on using the mathematical modelling method for multi-stage processes of petroleum feedstock refining. The group and individual composition of various petroleum fractions determined by chromatographic methods, were used as an initial data. Results. The effect of the component composition of the processed feedstock of catalytic reforming on the qualitative and quantitative properties of the components of commercial gasoline was estimated and predicted. The use of the catalytic cracking model showed that when processing the feedstock with a lower content of aromatic hydrocarbons and resins the coke content on the catalyst is lower by 0,15 % wt. This leads to increasing the catalyst activity and the desired product yields by 6,7 % and 4,9 wt. % in comparison with the feedstock with higher content of resins and aromatics.The maximum gasoline yield for two types of the feedstocks (55,4 and 56,5 % wt.) which is achieved at 536,0 and 534,0 °C was determined according to their hydrocarbon compositions. The predictive calculations with an assessment of how the composition of the catalytic cracking gasoline influences the formulation and commercial quality of the commercial gasoline using the lighter catalytic cracking feedstock, were performed. The possibility of increasing the amount of the catalytic cracking gasoline into the commercial gasoline formula is shown. The cost of motor fuel production in this case is reduced from 0,1 to 1,0 %