14 research outputs found

    Finite-Time Second-Order Sliding Mode Controllers for Spacecraft Attitude Tracking

    Get PDF
    The attitude tracking control problem of a spacecraft nonlinear system with external disturbances and inertia uncertainties is studied. Two robust attitude tracking controllers based on finite-time second-order sliding mode control schemes are proposed to solve this problem. For the first controller, smooth super twisting control is applied to quaternion-based spacecraft-attitude-tracking maneuvers. The second controller is developed by adding linear correction terms to the first super twisting control algorithm in order to improve the dynamic performance of the closed-loop system. Both controllers are continuous and, therefore, chattering free. The concepts of a strong Lyapunov function are employed to ensure a finite-time convergence property of the proposed controllers. Theoretical analysis shows that the resulting control laws have strong robustness and disturbance attenuation ability. Numerical simulations are also given to demonstrate the performance of the proposed control laws

    Anti-Unwinding Attitude Control with Fixed-Time Convergence for a Flexible Spacecraft

    Get PDF
    This paper investigates the fixed-time attitude tracking control problem for flexible spacecraft with unknown bounded disturbances. First, with the knowledge of norm upper bounds of external disturbances and the coupling effect of flexible modes, a novel robust fixed-time controller is designed to deal with this problem. Second, the controller is further enhanced by an adaptive law to avoid the knowledge of norm upper bounds of external disturbances and coupling effect of flexible modes. This control law guarantees the convergence of attitude tracking errors in fixed time where the settling time is bounded by a constant independent of initial conditions. Moreover, the proposed controllers can prevent the unwinding phenomenon. Simulation results are presented to demonstrate the performance of the proposed control scheme

    Adaptive-Gain Second-Order Sliding Mode Control of Attitude Tracking of Flexible Spacecraft

    No full text
    This paper investigates the robust finite-time control problem for flexible spacecraft attitude tracking maneuver in the presence of model uncertainties and external disturbances. Two robust attitude tracking controllers based on finite-time second-order sliding mode control algorithms are presented to solve this problem. For the first controller, a novel second-order sliding mode control scheme is developed to achieve high-precision tracking performance. For the second control law, an adaptive-gain second-order sliding mode control algorithm combing an adaptive law with second-order sliding mode control strategy is designed to relax the requirement of prior knowledge of the bound of the system uncertainties. The rigorous proofs show that the proposed controllers provide finite-time convergence of the attitude and angular velocity tracking errors. Numerical simulations on attitude tracking control are presented to demonstrate the performance of the developed controllers

    Inverse Optimal Attitude Stabilization of Flexible Spacecraft with Actuator Saturation

    No full text
    This paper presents a new robust inverse optimal control strategy for flexible spacecraft attitude maneuvers in the presence of external disturbances and actuator constraint. A new constrained attitude controller for flexible spacecraft is designed based on the Sontag-type formula and a control Lyapunov function. This control law optimizes a meaningful cost functional and the stability of the resulting closed-loop system is ensured by the Lyapunov framework. A sliding mode disturbance observer is used to compensate unknown bounded external disturbances. The ultimate boundedness of estimation error dynamics is guaranteed via a rigorous Lyapunov analysis. Simulation results are provided to demonstrate the performance of the proposed control law

    Output Feedback Control for Asymptotic Stabilization of Spacecraft with Input Saturation

    No full text
    This paper investigates the attitude stabilization problem of rigid spacecraft subject to actuator constraints, external disturbances, and attitude measurements only. An output feedback control framework with input saturation is proposed to solve this problem. The general saturation function is utilized in the proposed controller design and a unified control method is developed for the asymptotic stabilization of rigid spacecraft without velocity measurements. Asymptotic stability is proven by Lyapunov stability theory. Moreover, a new nonlinear disturbance observer is designed to compensate for external disturbances. Then, a composite controller is presented by combining a unified saturated output feedback control with a nonlinear disturbance observer. Desirable features of the proposed control scheme include the intuitive structure, robustness against external disturbances, avoidance of model information and velocity measurements, and ability to ensure that the actuator constraints are not violated. Finally, numerical simulations have been carried out to verify the effectiveness of the proposed control method

    Anti-disturbance inverse optimal control for spacecraft position and attitude maneuvers with input saturation

    No full text
    In this article, a new anti-disturbance inverse optimal translation and rotation control scheme for a rigid spacecraft with external disturbances and actuator constraint is presented. An inverse optimal controller with input saturations is designed to achieve asymptotic convergence to the desired translation and attitude and avoid the unwinding phenomenon. The derived optimal control law can minimize a given cost functional and guarantee the stability of the closed-loop system. Later, a new sliding mode disturbance observer is also proposed to compensate for the total disturbances. A rigorous Lyapunov analysis is employed to ensure the finite-time convergence of observer error dynamics. A numerical simulation of position and attitude maneuvers is given to verify the performance of the developed controller

    Robust optimal PID controller design for attitude stabilization of flexible spacecraft

    Get PDF
    summary:This paper presents a novel robust optimal control approach for attitude stabilization of a flexible spacecraft in the presence of external disturbances. An optimal control law is formulated by using concepts of inverse optimal control, proportional-integral-derivative control and a control Lyapunov function. A modified extended state observer is used to compensate for the total disturbances. High-gain and second order sliding mode algorithms are merged to obtain the proposed modified extended state observer. The second method of Lyapunov is used to demonstrate its properties including the convergence rate and ultimate boundedness of the estimation error. The proposed controller can stabilize the attitude control system and minimize a cost functional. Moreover, this controller achieves robustness against bounded external disturbances and the disturbances caused by the elastic vibration of flexible appendages. Numerical simulations are provided to demonstrate the performance of the developed controller

    Optimal Sliding Mode Controllers for Attitude Stabilization of Flexible Spacecraft

    Get PDF
    The robust optimal attitude control problem for a flexible spacecraft is considered. Two optimal sliding mode control laws that ensure the exponential convergence of the attitude control system are developed. Integral sliding mode control (ISMC) is applied to combine the first-order sliding mode with optimal control and is used to control quaternion-based spacecraft attitude manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state-dependent Riccati equation (SDRE) and optimal Lyapunov techniques are employed to solve the infinite-time nonlinear optimal control problem. The second method of Lyapunov is used to guarantee the stability of the attitude control system under the action of the proposed control laws. An example of multiaxial attitude manoeuvres is presented and simulation results are included to verify the usefulness of the developed controllers

    Optimal Higher-Order Sliding Mode Controller Designs for Spacecraft Attitude Manoeuvres

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Finite-Time Anti-Disturbance Inverse Optimal Attitude Tracking Control of Flexible Spacecraft

    No full text
    We propose a new robust optimal control strategy for flexible spacecraft attitude tracking maneuvers in the presence of external disturbances. An inverse optimal control law is designed based on a Sontag-type formula and a control Lyapunov function. An adapted extended state observer is used to compensate for the total disturbances. The proposed controller can be expressed as the sum of an inverse optimal control and an adapted extended state observer. It is shown that the developed controller can minimize a cost functional and ensure the finite-time stability of a closed-loop system without solving the associated Hamilton-Jacobi-Bellman equation directly. For an adapted extended state observer, the finite-time convergence of estimation error dynamics is proven using a strict Lyapunov function. An example of multiaxial attitude tracking maneuvers is presented and simulation results are included to show the performance of the developed controller
    corecore