5 research outputs found

    The complete chloroplast genome of Sonneratia griffithii Kurz (Lythraceae)

    No full text
    Sonneratia griffithii Kurz is a critically endangered mangrove species that can be found along the western coast of Thailand. In this study, we reported the complete chloroplast genome of S. griffithii. The chloroplast genome is 152,730 bp, consisting of one large single-copy (LSC) region, one small single-copy (SSC) region and a pair of inverted repeats (IRs). The LSC, SSC, and IR lengths are 87,226, 17,764, and 23,870 bp, respectively. The genome contains 113 unique genes, including 79 protein-coding, 30 tRNA, and 4 rRNA genes. The GC content of the chloroplast genome is 37.31%. The phylogenetic analysis based on 76 protein-coding genes showed a monophyletic group of S. griffithii and other Sonneratia species

    Genetic Dissection of Azuki Bean Weevil (<i>Callosobruchus chinensis</i> L.) Resistance in Moth Bean (<i>Vigna aconitifolia</i> [Jaqc.] Maréchal)

    No full text
    The azuki bean weevil (Callosobruchus chinensis L.) is an insect pest responsible for serious postharvest seed loss in leguminous crops. In this study, we performed quantitative trait locus (QTL) mapping of seed resistance to C. chinensis in moth bean (Vigna aconitifolia [Jaqc.] Mar&#233;chal). An F2 population of 188 plants developed by crossing resistant accession &#8216;TN67&#8217; (wild type from India; male parent) and susceptible accession &#8216;IPCMO056&#8217; (cultivated type from India; female parent) was used for mapping. Seeds of the F2 population from 2014 and F2:3 populations from 2016 and 2017 were bioassayed with C. chinensis, and the percentage of damaged seeds and progress of infestation severity were measured. Segregation analysis suggested that C. chinensis resistance in TN176 is controlled by a single dominant gene, designated as Rcc. QTL analysis revealed one principal and one modifying QTL for the resistance, named qVacBrc2.1 and qVacBrc5.1, respectively. qVacBrc2.1 was located on linkage group 2 between simple sequence repeat markers CEDG261 and DMB-SSR160 and accounted for 50.41% to 64.23% of resistance-related traits, depending on the trait and population. Comparative genomic analysis suggested that qVacBrc2.1 is the same as QTL Brc2.1 conferring C. chinensis resistance in wild azuki bean (V. nepalensis Tateishi and Maxted). Markers CEDG261 and DMB-SSR160 should be useful for marker-assisted selection for C. chinensis resistance in moth bean

    The complete mitochondrial genome sequence of the karst-dwelling crab, Terrapotamon thungwa (Crustacea: Brachyura: Potamidae)

    No full text
    Terrapotamon thungwa is a new species of terrestrial long-legged crab discovered in a karst landscape of southern Thailand. Here, we report the first complete mitochondrial genome of this crab species. The mitochondrial genome size is 16,156 base-pairs (bp), including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA), and two ribosomal RNA (rRNA) genes. The AT and GC content of the mitochondrial genome sequence is 73.2% and 26.8%, respectively. Phylogenetic analysis with 26 crustacean species, based on 13 mitochondrial conserve genes, showed that T. thungwa was closely related to other freshwater crab species in the family Potamidae

    The Genome and Transcriptome Analysis of the Vigna mungo Chloroplast

    No full text
    Vigna mungo is cultivated in approximately 5 million hectares worldwide. The chloroplast genome of this species has not been previously reported. In this study, we sequenced the genome and transcriptome of the V. mungo chloroplast. We identified many positively selected genes in the photosynthetic pathway (e.g., rbcL, ndhF, and atpF) and RNA polymerase genes (e.g., rpoC2) from the comparison of the chloroplast genome of V. mungo, temperate legume species, and tropical legume species. Our transcriptome data from PacBio isoform sequencing showed that the 51-kb DNA inversion could affect the transcriptional regulation of accD polycistronic. Using Illumina deep RNA sequencing, we found RNA editing of clpP in the leaf, shoot, flower, fruit, and root tissues of V. mungo. We also found three G-to-A RNA editing events that change guanine to adenine in the transcripts transcribed from the adenine-rich regions of the ycf4 gene. The edited guanine bases were found particularly in the chloroplast genome of the Vigna species. These G-to-A RNA editing events were likely to provide a mechanism for correcting DNA base mutations. The V. mungo chloroplast genome sequence and the analysis results obtained in this study can apply to phylogenetic studies and chloroplast genome engineering
    corecore