38 research outputs found

    Assembly and analysis of a male sterile rubber tree mitochondrial genome reveals DNA rearrangement events and a novel transcript

    Get PDF
    BACKGROUND: The rubber tree, Hevea brasiliensis, is an important plant species that is commercially grown to produce latex rubber in many countries. The rubber tree variety BPM 24 exhibits cytoplasmic male sterility, inherited from the variety GT 1. RESULTS: We constructed the rubber tree mitochondrial genome of a cytoplasmic male sterile variety, BPM 24, using 454 sequencing, including 8 kb paired-end libraries, plus Illumina paired-end sequencing. We annotated this mitochondrial genome with the aid of Illumina RNA-seq data and performed comparative analysis. We then compared the sequence of BPM 24 to the contigs of the published rubber tree, variety RRIM 600, and identified a rearrangement that is unique to BPM 24 resulting in a novel transcript containing a portion of atp9. CONCLUSIONS: The novel transcript is consistent with changes that cause cytoplasmic male sterility through a slight reduction to ATP production efficiency. The exhaustive nature of the search rules out alternative causes and supports previous findings of novel transcripts causing cytoplasmic male sterility

    The complete chloroplast genome of Sonneratia griffithii Kurz (Lythraceae)

    No full text
    Sonneratia griffithii Kurz is a critically endangered mangrove species that can be found along the western coast of Thailand. In this study, we reported the complete chloroplast genome of S. griffithii. The chloroplast genome is 152,730 bp, consisting of one large single-copy (LSC) region, one small single-copy (SSC) region and a pair of inverted repeats (IRs). The LSC, SSC, and IR lengths are 87,226, 17,764, and 23,870 bp, respectively. The genome contains 113 unique genes, including 79 protein-coding, 30 tRNA, and 4 rRNA genes. The GC content of the chloroplast genome is 37.31%. The phylogenetic analysis based on 76 protein-coding genes showed a monophyletic group of S. griffithii and other Sonneratia species

    The complete chloroplast genome sequence and phylogenetic analysis of Heritiera fomes Buch.-Ham. (Malvales: Sterculiaceae)

    No full text
    Heritiera fomes Buch.-Ham. (1800) is a species of mangrove in the family Malvaceae, widely distributed in the Indo-Pacific and listed as ‘endangered’ (EN) on the International Union for Conservation of Nature’s (IUCN) red list. We reported the complete chloroplast genome sequence of H. fomes. The genome was 168,521 bp in length and included two inverted repeats (IRs) of 34,496 bp, separated by a large single-copy (LSC) region of 88,604 bp and a small single-copy (SSC) region of 10,925 bp, respectively. The genome contained 87 protein-coding genes (PCGs), 8 rRNA genes, and 37 tRNA genes. The maximum-likelihood (ML) phylogenetic tree suggested that H. fomes is closely related to Heritiera angustata and Heritiera parvifolia with relatively high support bootstrap values of 86% and 100% with other species (Heritiera littoralis and Heritiera javanica), suggesting a relatively close genetic relationship between the five Heritiera plants. The chloroplast genome sequence provided a useful resource for conservation genetics studies of H. fomes and for phylogenetic studies of Heritiera

    Comparative Analysis of PacBio and Oxford Nanopore Sequencing Technologies for Transcriptomic Landscape Identification of Penaeus monodon

    No full text
    With the advantages that long-read sequencing platforms such as Pacific Biosciences (Menlo Park, CA, USA) (PacBio) and Oxford Nanopore Technologies (Oxford, UK) (ONT) can offer, various research fields such as genomics and transcriptomics can exploit their benefits. Selecting an appropriate sequencing platform is undoubtedly crucial for the success of the research outcome, thus there is a need to compare these long-read sequencing platforms and evaluate them for specific research questions. This study aims to compare the performance of PacBio and ONT platforms for transcriptomic analysis by utilizing transcriptome data from three different tissues (hepatopancreas, intestine, and gonads) of the juvenile black tiger shrimp, Penaeus monodon. We compared three important features: (i) main characteristics of the sequencing libraries and their alignment with the reference genome, (ii) transcript assembly features and isoform identification, and (iii) correlation of the quantification of gene expression levels for both platforms. Our analyses suggest that read-length bias and differences in sequencing throughput are highly influential factors when using long reads in transcriptome studies. These comparisons can provide a guideline when designing a transcriptome study utilizing these two long-read sequencing technologies

    A Chromosome-Scale Genome Assembly of Mitragyna speciosa (Kratom) and the Assessment of Its Genetic Diversity in Thailand

    No full text
    Mitragyna speciosa (Kratom) is a tropical narcotic plant native to Southeast Asia with unique pharmacological properties. Here, we report the first chromosome-scale assembly of the M. speciosa genome. We employed PacBio sequencing to obtain a preliminary assembly, which was subsequently scaffolded using the chromatin contact mapping technique (Hi-C) into 22 pseudomolecules. The final assembly was 692 Mb with a scaffold N50 of 26 Mb. We annotated a total of 39,708 protein-coding genes, and our gene predictions recovered 98.4% of the highly conserved orthologs based on the BUSCO analysis. The phylogenetic analysis revealed that M. speciosa diverged from the last common ancestors of Coffea arabica and Coffea canephora approximately 47.6 million years ago. Our analysis of the sequence divergence at fourfold-degenerate sites from orthologous gene pairs provided evidence supporting a genome-wide duplication in M. speciosa, agreeing with the report that members of the genus Mitragyna are tetraploid. The STRUCTURE and principal component analyses demonstrated that the 85 M. speciosa accessions included in this study were an admixture of two subpopulations. The availability of our high-quality chromosome-level genome assembly and the transcriptomic resources will be useful for future studies on the alkaloid biosynthesis pathway, as well as comparative phylogenetic studies in Mitragyna and related species

    The complete mitogenome of the Thai soldier crab Mictyris thailandensis Davie, Wisespongpand & Shih, 2013 (Crustacea: Decapoda: Mictyridae)

    No full text
    Mictyris thailandensis has been described recently in the family Mictyridae which is found only in the Andaman Sea, west coast of Thailand. In this study, we performed shotgun genome sequencing of a male M. thailandensis using a paired-end (150 bp) sequencing chemistry on MGISEQ-2000RS and report the complete mitochondrial genome of M. thailandensis (15,557 bp). A total of 37 genes have been annotated: 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and a control region. Comparative phylogenetic analysis with 29 crustaceans based on 13 conserved genes demonstrated that M. thailandensis is closely related to other soldier crabs in the family Mictyridae. The mitogenome of M. thailandensis presented here provides useful genetic information to help understand the evolutionary relationships among the Mictyridae family members

    Transcriptome analyses reveal the synergistic effects of feeding and eyestalk ablation on ovarian maturation in black tiger shrimp

    No full text
    Abstract Unilateral eyestalk ablation in the female black tiger shrimp Penaeus monodon is commonly employed to induce ovarian maturation. However, the importance of complementing this practice with the provision of live feed supplement (such as polychaetes) has not been emphasized in previous studies. Indeed, it has been less emphasized that female broodstock must be fed with live feeds such as polychaetes for this practice to be effective. While the effects of eyestalk ablation have been thoroughly studied in various aspects, the synergistic effects of feeding with live feeds and the ablation have never been elucidated at a transcriptome-wide level. With recent advances in the next-generation sequencing platforms, it is now possible to investigate the effects of eyestalk ablation and live feeds at the transcriptomic levels. This study employed both short-read Illumina RNA sequencing and long-read Pacific Biosciences (PacBio) isoform sequencing (Iso-seq) to generate the first high-quality ovarian reference transcriptome in P. monodon. This novel assembly allowed us to dissect the effects of feeds and eyestalk ablation and reveal their synergistic effects at the transcriptomic level through the regulation of important genes involved in fatty acid regulation, energy production, and hormone-mediated oocyte maturation pathways. The synergistic effects between the polychaete feeding and the eyestalk ablation in the process of ovarian maturation in black tiger shrimp suggest that without having proper nutrients from the polychaetes, female broodstock might not be ready to develop its ovary. However, even with proper nutrients, the eyestalk ablation is still necessary to perhaps manipulate the female endocrine of the black tiger shrimp. These findings shed the light on molecular mechanisms and key molecular pathways that lead to successful ovarian maturation

    The complete mitochondrial genome sequence of the mountain crab Indochinamon bhumibol

    No full text
    Indochinamon bhumibol has been found as the biggest freshwater crab in Thailand. In this study, we report the first complete sequence of mitochondrial genome from I. bhumibol encoding 13 protein-coding genes, 22 transfer RNAs, and 2 ribosomal RNAs. The nucleotide composition of I. bhumibol mitogenome showed a strong AT bias (70.4%) with a low GC content (29.6%). Comparative phylogenetic analysis with 28 crustaceans based on nine conserved genes demonstrated that I. bhumibol was closely related to members of the Potamidae family

    The Genome and Transcriptome Analysis of the Vigna mungo Chloroplast

    No full text
    Vigna mungo is cultivated in approximately 5 million hectares worldwide. The chloroplast genome of this species has not been previously reported. In this study, we sequenced the genome and transcriptome of the V. mungo chloroplast. We identified many positively selected genes in the photosynthetic pathway (e.g., rbcL, ndhF, and atpF) and RNA polymerase genes (e.g., rpoC2) from the comparison of the chloroplast genome of V. mungo, temperate legume species, and tropical legume species. Our transcriptome data from PacBio isoform sequencing showed that the 51-kb DNA inversion could affect the transcriptional regulation of accD polycistronic. Using Illumina deep RNA sequencing, we found RNA editing of clpP in the leaf, shoot, flower, fruit, and root tissues of V. mungo. We also found three G-to-A RNA editing events that change guanine to adenine in the transcripts transcribed from the adenine-rich regions of the ycf4 gene. The edited guanine bases were found particularly in the chloroplast genome of the Vigna species. These G-to-A RNA editing events were likely to provide a mechanism for correcting DNA base mutations. The V. mungo chloroplast genome sequence and the analysis results obtained in this study can apply to phylogenetic studies and chloroplast genome engineering
    corecore