23 research outputs found

    Idiosyncrasies of nucleation in large, deeply supercooled liquid clusters

    Full text link
    Characteristic differences between the nucleation of solids in bulk liquids and in liquid clusters are identified in computer simulations, and the reasons for these differences are discussed. © 2000 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87550/2/45_1.pd

    Structure and Transformation in Clusters: Computational Experiments

    Full text link
    A very brief review of gas-phase electron diffraction and one of its offshoots is given. Parallels are drawn between experimental studies of molecules, including conformational changes, and studies of clusters, including phase changes, calling particular attention to the use of computers as the preferred experimental apparatus. A sketch is presented of what has been learned about matter in transition by the application of computer simulations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45664/1/11224_2004_Article_225523.pd

    Stochastic simulation and analysis of biomolecular reaction networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, several stochastic simulation algorithms have been developed to generate Monte Carlo trajectories that describe the time evolution of the behavior of biomolecular reaction networks. However, the effects of various stochastic simulation and data analysis conditions on the observed dynamics of complex biomolecular reaction networks have not recieved much attention. In order to investigate these issues, we employed a a software package developed in out group, called Biomolecular Network Simulator (BNS), to simulate and analyze the behavior of such systems. The behavior of a hypothetical two gene <it>in vitro </it>transcription-translation reaction network is investigated using the Gillespie exact stochastic algorithm to illustrate some of the factors that influence the analysis and interpretation of these data.</p> <p>Results</p> <p>Specific issues affecting the analysis and interpretation of simulation data are investigated, including: (1) the effect of time interval on data presentation and time-weighted averaging of molecule numbers, (2) effect of time averaging interval on reaction rate analysis, (3) effect of number of simulations on precision of model predictions, and (4) implications of stochastic simulations on optimization procedures.</p> <p>Conclusion</p> <p>The two main factors affecting the analysis of stochastic simulations are: (1) the selection of time intervals to compute or average state variables and (2) the number of simulations generated to evaluate the system behavior.</p

    Onset dynamics of type A botulinum neurotoxin-induced paralysis

    Get PDF
    Experimental studies have demonstrated that botulinum neurotoxin serotype A (BoNT/A) causes flaccid paralysis by a multi-step mechanism. Following its binding to specific receptors at peripheral cholinergic nerve endings, BoNT/A is internalized by receptor-mediated endocytosis. Subsequently its zinc-dependent catalytic domain translocates into the neuroplasm where it cleaves a vesicle-docking protein, SNAP-25, to block neurally evoked cholinergic neurotransmission. We tested the hypothesis that mathematical models having a minimal number of reactions and reactants can simulate published data concerning the onset of paralysis of skeletal muscles induced by BoNT/A at the isolated rat neuromuscular junction (NMJ) and in other systems. Experimental data from several laboratories were simulated with two different models that were represented by sets of coupled, first-order differential equations. In this study, the 3-step sequential model developed by Simpson (J Pharmacol Exp Ther 212:16–21,1980) was used to estimate upper limits of the times during which anti-toxins and other impermeable inhibitors of BoNT/A can exert an effect. The experimentally determined binding reaction rate was verified to be consistent with published estimates for the rate constants for BoNT/A binding to and dissociating from its receptors. Because this 3-step model was not designed to reproduce temporal changes in paralysis with different toxin concentrations, a new BoNT/A species and rate (kS) were added at the beginning of the reaction sequence to create a 4-step scheme. This unbound initial species is transformed at a rate determined by kS to a free species that is capable of binding. By systematically adjusting the values of kS, the 4-step model simulated the rapid decline in NMJ function (kS ≥0.01), the less rapid onset of paralysis in mice following i.m. injections (kS = 0.001), and the slow onset of the therapeutic effects of BoNT/A (kS < 0.001) in man. This minimal modeling approach was not only verified by simulating experimental results, it helped to quantitatively define the time available for an inhibitor to have some effect (tinhib) and the relation between this time and the rate of paralysis onset. The 4-step model predicted that as the rate of paralysis becomes slower, the estimated upper limits of (tinhib) for impermeable inhibitors become longer. More generally, this modeling approach may be useful in studying the kinetics of other toxins or viruses that invade host cells by similar mechanisms, e.g., receptor-mediated endocytosis

    CATMoS: Collaborative Acute Toxicity Modeling Suite.

    Get PDF
    BACKGROUND: Humans are exposed to tens of thousands of chemical substances that need to be assessed for their potential toxicity. Acute systemic toxicity testing serves as the basis for regulatory hazard classification, labeling, and risk management. However, it is cost- and time-prohibitive to evaluate all new and existing chemicals using traditional rodent acute toxicity tests. In silico models built using existing data facilitate rapid acute toxicity predictions without using animals. OBJECTIVES: The U.S. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) Acute Toxicity Workgroup organized an international collaboration to develop in silico models for predicting acute oral toxicity based on five different end points: Lethal Dose 50 (LD50 value, U.S. Environmental Protection Agency hazard (four) categories, Globally Harmonized System for Classification and Labeling hazard (five) categories, very toxic chemicals [LD50 (LD50≤50mg/kg)], and nontoxic chemicals (LD50>2,000mg/kg). METHODS: An acute oral toxicity data inventory for 11,992 chemicals was compiled, split into training and evaluation sets, and made available to 35 participating international research groups that submitted a total of 139 predictive models. Predictions that fell within the applicability domains of the submitted models were evaluated using external validation sets. These were then combined into consensus models to leverage strengths of individual approaches. RESULTS: The resulting consensus predictions, which leverage the collective strengths of each individual model, form the Collaborative Acute Toxicity Modeling Suite (CATMoS). CATMoS demonstrated high performance in terms of accuracy and robustness when compared with in vivo results. DISCUSSION: CATMoS is being evaluated by regulatory agencies for its utility and applicability as a potential replacement for in vivo rat acute oral toxicity studies. CATMoS predictions for more than 800,000 chemicals have been made available via the National Toxicology Program's Integrated Chemical Environment tools and data sets (ice.ntp.niehs.nih.gov). The models are also implemented in a free, standalone, open-source tool, OPERA, which allows predictions of new and untested chemicals to be made. https://doi.org/10.1289/EHP8495

    Molecular dynamics simulations of the freezing of gold nanoparticles

    Full text link
    A set of molten gold clusters, each with 1157 gold atoms, was studied by molecular dynamics simulations as the clusters underwent freezing at three different temperatures. Most of the clusters attained an icosahedral structure upon freezing, a structure found to be stable to mild annealing. Other structures observed were imperfect truncated decahedral, truncated octahedral and hexagonal close packed structures. The role of kinetics in the process of cluster solidification is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41852/1/10053-16-1-43_10160043.pd

    doi:10.1093/nar/gkp408 In silico selection of RNA aptamers

    No full text
    In vitro selection of RNA aptamers that bind to a specific ligand usually begins with a random pool of RNA sequences. We propose a computational approach for designing a starting pool of RNA sequences for the selection of RNA aptamers for specific analyte binding. Our approach consists of three steps: (i) selection of RNA sequences based on their secondary structure, (ii) generating a library of three-dimensional (3D) structures of RNA molecules and (iii) high-throughput virtual screening of this library to select aptamers with binding affinity to a desired small molecule. We developed a set of criteria that allows one to select a sequence with potential binding affinity from a pool of random sequences and developed a protocol for RNA 3D structure prediction. As verification, we tested the performance of in silico selection on a set of six known aptamer–ligand complexes. The structures of the native sequences for the ligands in the testing set were among the top 5 % of the selected structures. The proposed approach reduces the RNA sequences search space by four to five orders of magnitude—significantly accelerating the experimental screening and selection of high-affinity aptamers

    Freezing of Ni−Al Bimetallic Nanoclusters in Computer Simulations

    No full text

    Melting and Freezing of Gold Nanoclusters †

    No full text
    corecore