399 research outputs found
Selective coupling of type 6 adenylyl cyclase with type 2 IP3 receptors mediates direct sensitization of IP3 receptors by cAMP
Interactions between cyclic adenosine monophosphate (cAMP) and Ca2+ are widespread, and for both intracellular messengers, their spatial organization is important. Parathyroid hormone (PTH) stimulates formation of cAMP and sensitizes inositol 1,4,5-trisphosphate receptors (IP3R) to IP3. We show that PTH communicates with IP3R via âcAMP junctionsâ that allow local delivery of a supramaximal concentration of cAMP to IP3R, directly increasing their sensitivity to IP3. These junctions are robust binary switches that are digitally recruited by increasing concentrations of PTH. Human embryonic kidney cells express several isoforms of adenylyl cyclase (AC) and IP3R, but IP3R2 and AC6 are specifically associated, and inhibition of AC6 or IP3R2 expression by small interfering RNA selectively attenuates potentiation of Ca2+ signals by PTH. We define two modes of cAMP signaling: binary, where cAMP passes directly from AC6 to IP3R2; and analogue, where local gradients of cAMP concentration regulate cAMP effectors more remote from AC. Binary signaling requires localized delivery of cAMP, whereas analogue signaling is more dependent on localized cAMP degradation
A multiwavelength study of the supernova remnant G296.8-0.3
We report XMM-Newton observations of the Galactic supernova remnant
G296.8-0.3, together with complementary radio and infrared data. The spatial
and spectral properties of the X-ray emission, detected towards G296.8-0.3, was
investigated in order to explore the possible evolutionary scenarios and the
physical connexion with its unusual morphology detected at radio frequencies.
G296.8-0.3 displays diffuse X-ray emission correlated with the peculiar radio
morphology detected in the interior of the remnant and with the shell-like
radio structure observed to the northwest side of the object. The X-ray
emission peaks in the soft/medium energy range (0.5-3.0 keV). The X-ray
spectral analysis confirms that the column density is high (NH \sim 0.64 x
10^{22} cm^{-2}) which supports a distant location (d>9 kpc) for the SNR. Its
X-ray spectrum can be well represented by a thermal (PSHOCK) model, with kT
\sim 0.86 keV, an ionization timescale of 6.1 x 10^{10} cm^{-3} s, and low
abundance (0.12 Z_sun). The 24 microns observations show shell-like emission
correlated with part of the northwest and southeast boundaries of the SNR. In
addition a point-like X-ray source is also detected close to the geometrical
center of the radio SNR. The object presents some characteristics of the
so-called compact central objects (CCO). Its X-ray spectrum is consistent with
those found at other CCOs and the value of NH is consistent with that of
G296.8-0.3, which suggests a physical connexion with the SNR.Comment: Accepted for publication in Astrophysics & Space Scienc
Capabilities of Global Ocean Programmes to Inform Climate Services
AbstractClimate services are identified as a means of providing the information that is needed to support decision makers in assessing the impacts of climate change on the oceans. We discuss the current observation programs to support these services, and their capacity to provide the information needed to monitor and address key science questions. An analysis of the current oceanographic observation programs is shown to be undersubscribed from their original plans. There are vulnerabilities in the current observing programs, particularly in relation to satellite measurements. The interaction of climate services with the research community, with policy makers and stakeholders and operational centres is outlined and leads to four recommendations. The key recommendations are for the more pervasisve development of climate services and for a modest increment in the observing program informed by the recommendations of the OceanObsâ09 conference
Evaluating model simulations of twentieth-century sea-level rise. Part II: regional sea-level changes
Twentieth-century regional sea level changes are estimated from 12 climate models from phase 5 of the Climate Model Intercomparison Project (CMIP5). The output of the CMIP5 climate model simulations was used to calculate the global and regional sea level changes associated with dynamic sea level, atmospheric loading, glacier mass changes, and ice sheet surface mass balance contributions. The contribution from groundwater depletion, reservoir storage, and dynamic ice sheet mass changes are estimated from observations as they are not simulated by climate models. All contributions are summed, including the glacial isostatic adjustment (GIA) contribution, and compared to observational estimates from 27 tide gauge records over the twentieth century (1900â2015). A general agreement is found between the simulated sea level and tide gauge records in terms of interannual to multidecadal variability over 1900â2015. But climate models tend to systematically underestimate the observed sea level trends, particularly in the first half of the twentieth century. The corrections based on attributable biases between observations and models that have been identified in Part I of this two-part paper result in an improved explanation of the spatial variability in observed sea level trends by climate models. Climate models show that the spatial variability in sea level trends observed by tide gauge records is dominated by the GIA contribution and the steric contribution over 1900â2015. Climate models also show that it is important to include all contributions to sea level changes as they cause significant local deviations; note, for example, the groundwater depletion around India, which is responsible for the low twentieth-century sea level rise in the region
The rms-flux relations in different branches in Cyg X-2
In this paper, the rms-flux (root mean square-flux) relation along the
Z-track of the bright Z-Source Cyg X-2 is analyzed using the observational data
of Rossi X-ray Timing Explorer (RXTE). Three types of rms-flux relations, i.e.
positive, negative, and 'arch'-like correlations are found in different
branches. The rms is positively correlated with flux in normal branch (NB), but
anti-correlated in the vertical horizontal branch (VHB). The rms-flux relation
shows an 'arch'-like shape in the horizontal branch (HB). We also try to
explain this phenomenon using existing models.Comment: Accepted for publication in Astrophysics & Space Scienc
Effects of sea level rise on economy of the United States
We report the first ex post study of the economic impact of sea level rise. We apply two econometric approaches to estimate the past effects of sea level rise on the economy of the USA, viz. Barro type growth regressions adjusted for spatial patterns and a matching estimator. Unit of analysis is 3063 counties of the USA. We fit growth regressions for 13 time periods and we estimated numerous varieties and robustness tests for both growth regressions and matching estimator. Although there is some evidence that sea level rise has a positive effect on economic growth, in most specifications the estimated effects are insignificant. We therefore conclude that there is no stable, significant effect of sea level rise on economic growth. This finding contradicts previous ex ante studies
Recommended from our members
A High-End Estimate of Sea Level Rise for Practitioners
Sea level rise (SLR) is a long-lasting consequence of climate change because global anthropogenic warming takes centuries to millennia to equilibrate for the deep ocean and ice sheets. SLR projections based on climate models support policy analysis, risk assessment and adaptation planning today, despite their large uncertainties. The central range of the SLR distribution is estimated by process-based models. However, risk-averse practitioners often require information about plausible future conditions that lie in the tails of the SLR distribution, which are poorly defined by existing models. Here, a community effort combining scientists and practitioners builds on a framework of discussing physical evidence to quantify high-end global SLR for practitioners. The approach is complementary to the IPCC AR6 report and provides further physically plausible high-end scenarios. High-end estimates for the different SLR components are developed for two climate scenarios at two timescales. For global warming of +2°C in 2100 (RCP2.6/SSP1-2.6) relative to pre-industrial values our high-end global SLR estimates are up to 0.9 m in 2100 and 2.5 m in 2300. Similarly, for a (RCP8.5/SSP5-8.5), we estimate up to 1.6 m in 2100 and up to 10.4 m in 2300. The large and growing differences between the scenarios beyond 2100 emphasize the long-term benefits of mitigation. However, even a modest 2°C warming may cause multi-meter SLR on centennial time scales with profound consequences for coastal areas. Earlier high-end assessments focused on instability mechanisms in Antarctica, while here we emphasize the importance of the timing of ice shelf collapse around Antarctica. This is highly uncertain due to low understanding of the driving processes. Hence both process understanding and emission scenario control high-end SLR
What are shared and social values of ecosystems?
The theoretical framework outlined in this paper was developed initially through a series of expert workshops as part of the Valuing Nature Network â BRIDGE: From Values to Decisions project, funded by the UK Natural Environment Research Council (NERC). It was developed further through the follow-on phase of the UK National Ecosystem Assessment (Work Package 6: Shared, Plural and Cultural Values) funded by the UK Department of the Environment, Food and Rural Affairs (Defra), the Welsh Government, NERC, the Economic and Social Research Council (ESRC), and the Arts and Humanities Research Council (AHRC).Peer reviewedPublisher PD
Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield
High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of XeâHe mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by ⌠2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures. [Figure not available: see fulltext.]
- âŠ