28 research outputs found

    Stable amorphous georgeite as a precursor to a high-activity catalyst .

    Get PDF
    Copper and zinc form an important group of hydroxycarbonate minerals that include zincian malachite, aurichalcite, rosasite and the exceptionally rare and unstable—and hence little known and largely ignored1—georgeite. The first three of these minerals are widely used as catalyst precursors2, 3, 4 for the industrially important methanol-synthesis and low-temperature water–gas shift (LTS) reactions5, 6, 7, with the choice of precursor phase strongly influencing the activity of the final catalyst. The preferred phase2, 3, 8, 9, 10 is usually zincian malachite. This is prepared by a co-precipitation method that involves the transient formation of georgeite11; with few exceptions12 it uses sodium carbonate as the carbonate source, but this also introduces sodium ions—a potential catalyst poison. Here we show that supercritical antisolvent (SAS) precipitation using carbon dioxide (refs 13, 14), a process that exploits the high diffusion rates and solvation power of supercritical carbon dioxide to rapidly expand and supersaturate solutions, can be used to prepare copper/zinc hydroxycarbonate precursors with low sodium content. These include stable georgeite, which we find to be a precursor to highly active methanol-synthesis and superior LTS catalysts. Our findings highlight the value of advanced synthesis methods in accessing unusual mineral phases, and show that there is room for exploring improvements to established industrial catalysts

    Study of the nature and mechanism of the rhombohedral-to-cubic phase transition in alpha-AlF3 with molecular dynamics simulations

    No full text
    α-AlF3, which adopts a rhombohedrally distorted form of the ReO3 structure at room temperature, undergoes a phase transition to the cubic ReO3 structure at 466°C. The phase transition has been studied using molecular dynamics (MD) simulations performed with a polarizable ion model (PIM). The results are compared to information obtained from experimental diffraction data, and analogies to the tilting schemes of the structurally related perovskite phases are made. The cubic phase can be distinguished from the rhombohedral phase by following the Al-F-Al bond angles that describe the tilting of the AlF6 corner sharing octahedra as a function of temperature. The Al-F-Al chains are still bent in the so-called cubic phase, but the direction of tilting of the AlF6 octahedra varies continuously during the MD run, so that the time-averaged symmetry of the system is nearly cubic. The motion of the octahedra primarily involves a 360° rotation of the vector that describes the displacement of the F atom from its ideal position in a linear Al-F-Al chain. It is this 360° motion that distinguishes the cubic from the rhombohedral phase. The high-temperature phase is also associated with increased vibrations of the Al-F-Al chains. The results provide an explanation for the large thermal parameters observed experimentally for fluorine (in structures refined from diffraction data) above the phase transition. The simulation results suggest the possible existence of a third (orthorhombic) form of α-AlF3, which is energetically very similar to the rhombohedral phase at room temperature but differs in its octahedral tilting scheme

    Lithiation thermodynamics and kinetics of the TiO2 (B) nanoparticles.

    No full text
    TiO2 (B) has attracted considerable attention in recent years because it exhibits the largest capacity among all studied titania polymorphs, with high rate performance for Li intercalation being achieved when this material is nanostructured. However, due to the complex nature of its lithiation mechanism and practical challenges in probing Li structure in nanostructured materials, a definitive understanding of the lithiation thermodynamics has yet to be established. A comprehensive mechanistic investigation of the TiO2 (B) nanoparticles is therefore presented using a combination of in situ/operando X-ray pair distribution function (PDF) and electrochemical techniques. The discharge begins with surface reactions in parallel with Li insertion into the subsurface of the nanoparticles. The Li bulk insertion starts with a single-phase reaction into the A2 site, a position adjacent to the b-channel. A change of the Li diffusion pathway from that along this open channel to that along the c-direction is likely to occur at the composition of Li0.25TiO2 until Li0.5TiO2 is attained, leading to a two-step A2-site incorporation with one step kinetically distinct from the other. Subsequent Li insertion involves the C' site, a position situated inside the channel, and follows a rapid two-phase reaction to form Li0.75TiO2. Due to the high diffusion barrier associated with the further lithiation, Li insertion into the A1 site, another position adjacent to the channel neighboring the A2 sites, is kinetically restricted. This study not only explores the lithiation reaction thermodynamics and mechanisms of nanoparticulate TiO2 (B) but also serves as a strong reference for future studies of the bulk phase, and for future calculations to study the Li transport properties of TiO2 (B)
    corecore