266 research outputs found

    Research to improve maritime education and training for energy efficient ship operation in China

    Get PDF
    The dissertation is a study to improve Chinese maritime education and training (MET) for raising the performance of energy efficient ship operation, by analyzing the increasing demand on seafarers’ capacity and the barriers existing in the Chinese MET for energy efficient ship operation. Finally, a systematic framework of improvement measures was provided for Chinese MET. A brief review of the increasing demand on seafarers for energy efficient ship operation was carried out from four aspects including regulations, practices on board ships, alternative fuel and renewable energy sources. Based on the increasing demand, the barriers existing in the Chinese MET was analyzed by literature review and questionnaires. The final presentation of the barriers was obtained by an online workshop, the barriers include four aspects, courses, pedagogy, cognition practice, and cultural construction. Additionally, each aspect of the barriers includes four dimensions, which are human resource, financial resource, other resource and policy. Furthermore, in order to develop the framework of improvement measures, the lessons from other industries were also analyzed by literature review. On the basis of the increasing demand on seafarers and the identified barriers, a systematic framework of improvement measures was built up, which contains two new subjects, a comprehensive project for improving pedagogy, and some recommendations for cognition practice, cultural construction and policy making. Additionally, a batch of cognition practice of Marine Engineering students of DMU was chosen to assess the advised workshop through online communication with educators. All attending students believed that the workshop is helpful for improving understanding of energy efficient ship operation. Finally, the PDCA cycle and the participatory design approach were introduced for the development of the framework

    On the intrinsic hardness of a metallic film/substrate system: Indentation size and substrate effects

    Get PDF
    To examine effects of indentation size and substrate on the hardness determination of thin films, two typical types of hard film/soft substrate (Ni/Fe) and soft film/hard substrate (Al/Si and Al/glass) systems are investigated. A simple model is proposed to predict the intrinsic hardness of thin films, which allows a more accurate fitting to empirical data and the estimation of ultimate film hardness. The model can be used to interpret indentation data and extrapolate the indentation depth-hardness curve to an important region where indentation depth lies between 1% to 5 times of film thickness. The results are well consistent with the evolving trend of composite hardness obtained from experiments and numerical results by finite element analysis

    Failure prediction of high-capacity electrode materials in lithium-ion batteries

    Get PDF
    The large volume change during lithium-ion insertion/extraction leads to huge stress and even failure of active materials. To well understand such a problem, the two-phase lithiation process of film and hollow core-shell electrodes is simulated by using a non-linear diffusion lithiation model. The dynamic evolution of lithium-ion concentration and diffusion-induced stress are obtained. Based on the dimensional analysis, a phase diagram is determined to demonstrate the relationship between critical failure, structure dimensions and mechanical properties. As a case study, the critical state of charge in Sn films are measured and compared with theoretical results

    Study of the cytological features of bone marrow mesenchymal stem cells from patients with neuromyelitis optica.

    Get PDF
    Neuromyelitis optica (NMO) is a refractory autoimmune inflammatory disease of the central nervous system without an effective cure. Autologous bone marrow‑derived mesenchymal stem cells (BM‑MSCs) are considered to be promising therapeutic agents for this disease due to their potential regenerative, immune regulatory and neurotrophic effects. However, little is known about the cytological features of BM‑MSCs from patients with NMO, which may influence any therapeutic effects. The present study aimed to compare the proliferation, differentiation and senescence of BM‑MSCs from patients with NMO with that of age‑ and sex‑matched healthy subjects. It was revealed that there were no significant differences in terms of cell morphology or differentiation capacities in the BM‑MSCs from the patients with NMO. However, in comparison with healthy controls, BM‑MSCs derived from the Patients with NMO exhibited a decreased proliferation rate, in addition to a decreased expression of several cell cycle‑promoting and proliferation‑associated genes. Furthermore, the cell death rate increased in BM‑MSCs from patients under normal culture conditions and an assessment of the gene expression profile further confirmed that the BM‑MSCs from patients with NMO were more vulnerable to senescence. Platelet‑derived growth factor (PDGF), as a major mitotic stimulatory factor for MSCs and a potent therapeutic cytokine in demyelinating disease, was able to overcome the decreased proliferation rate and increased senescence defects in BM‑MSCs from the patients with NMO. Taken together, the results from the present study have enabled the proposition of the possibility of combining the application of autologous BM‑MSCs and PDGF for refractory and severe patients with NMO in order to elicit improved therapeutic effects, or, at the least, to include PDGF as a necessary and standard growth factor in the current in vitro formula for the culture of NMO patient‑derived BM‑MSCs

    Effects of size and concentration on diffusion-induced stress in lithium-ion batteries

    Get PDF
    Capacity fade of lithium-ion batteries induced by chemo-mechanical degradation during charge-discharge cycles is the bottleneck in design of high-performance batteries, especially high-capacity electrode materials. Stress generated due to diffusion-mechanical coupling in lithium-ion intercalation and deintercalation is accompanied by swelling, shrinking, and even micro-cracking. In this paper, we propose a theoretical model for a cylindrical nanowire electrode by combining the bond-order-length-strength and diffusion theories. It is shown that size and concentration have a significant influence on the stress fields in radial, hoop, and axial directions. This can explain why a smaller electrode with a huge volume change survives in the lithiation/delithiation process

    Brain Injury Differences in Frontal Impact Crash Using Different Simulation Strategies

    Get PDF
    In the real world crashes, brain injury is one of the leading causes of deaths. Using isolated human head finite element (FE) model to study the brain injury patterns and metrics has been a simplified methodology widely adopted, since it costs significantly lower computation resources than a whole human body model does. However, the degree of precision of this simplification remains questionable. This study compared these two kinds of methods: (1) using a whole human body model carried on the sled model and (2) using an isolated head model with prescribed head motions, to study the brain injury. The distribution of the von Mises stress (VMS), maximum principal strain (MPS), and cumulative strain damage measure (CSDM) was used to compare the two methods. The results showed that the VMS of brain mainly concentrated at the lower cerebrum and occipitotemporal region close to the cerebellum. The isolated head modelling strategy predicted higher levels of MPS and CSDM 5%, while the difference is small in CSDM 10% comparison. It suggests that isolated head model may not equivalently reflect the strain levels below the 10% compared to the whole human body model
    • …
    corecore