31 research outputs found

    Two-Path Spatial-Temporal Feature Fusion and View Embedding for Gait Recognition

    No full text
    Gait recognition is a distinctive biometric technique that can identify pedestrians by their walking patterns from considerable distances. A critical challenge in gait recognition lies in effectively acquiring discriminative spatial-temporal representations from silhouettes that exhibit invariance to disturbances. In this paper, we present a novel gait recognition network by aggregating features in the spatial-temporal and view domains, which consists of two-path spatial-temporal feature fusion module and view embedding module. Specifically, two-path spatial-temporal feature fusion module firstly utilizes multi-scale feature extraction (MSFE) to enrich the input features with multiple convolution kernels of various sizes. Then, frame-level spatial feature extraction (FLSFE) and multi-scale temporal feature extraction (MSTFE) are parallelly constructed to capture spatial and temporal gait features of different granularities and these features are fused together to obtain muti-scale spatial-temporal features. FLSFE is designed to extract both global and local gait features by employing a specially designed residual operation. Simultaneously, MSTFE is applied to adaptively interact multi-scale temporal features and produce suitable motion representations in temporal domain. Taking into account the view information, we introduce a view embedding module to reduce the impact of differing viewpoints. Through the extensive experimentation over CASIA-B and OU-MVLP datasets, the proposed method has achieved superior performance to the other state-of-the-art gait recognition approaches

    Advances on chimeric antigen receptor-modified T-cell therapy for oncotherapy

    No full text
    Abstract Tumor treatment is still complicated in the field of medicine. Tumor immunotherapy has been the most interesting research field in cancer therapy. Application of chimeric antigen receptor T (CAR-T) cell therapy has recently achieved excellent clinical outcome in patients, especially those with CD19-positive hematologic malignancies. This phenomenon has induced intense interest to develop CAR-T cell therapy for cancer, especially for solid tumors. However, the performance of CAR-T cell treatment in solid tumor is not as satisfactory as that in hematologic disease. Clinical studies on some neoplasms, such as glioblastoma, ovarian cancer, and cholangiocarcinoma, have achieved desirable outcome. This review describes the history and evolution of CAR-T, generalizes the structure and preparation of CAR-T, and summarizes the latest advances on CAR-T cell therapy in different tumor types. The last section presents the current challenges and prospects of CAR-T application to provide guidance for subsequent research

    Ecological Vulnerability Assessment Based on Fuzzy Analytical Method and Analytic Hierarchy Process in Yellow River Delta

    No full text
    The Yellow River Delta (YRD), located in Yellow River estuary, is characterized by rich ecological system types, and provides habitats or migration stations for wild birds, all of which makes the delta an ecological barrier or ecotone for inland areas. Nevertheless, the abundant natural resources of YRD have brought huge challenges to the area, and frequent human activities and natural disasters have damaged the ecological systems seriously, and certain ecological functions have been threatened. Therefore, it is necessary to determine the status of the ecological environment based on scientific methods, which can provide scientifically robust data for the managers or stakeholders to adopt timely ecological protection measures. The aim of this study was to obtain the spatial distribution of the ecological vulnerability (EV) in YRD based on 21 indicators selected from underwater status, soil condition, land use, landform, vegetation cover, meteorological conditions, ocean influence, and social economy. In addition, the fuzzy analytic hierarchy process (FAHP) method was used to obtain the weights of the selected indicators, and a fuzzy logic model was constructed to obtain the result. The result showed that the spatial distribution of the EV grades was regular, while the fuzzy membership of EV decreased gradually from the coastline to inland area, especially around the river crossing, where it had the lowest EV. Along the coastline, the dikes had an obviously protective effect for the inner area, while the EV was higher in the area where no dikes were built. This result also showed that the soil condition and groundwater status were highly related to the EV spatially, with the correlation coefficients −0.55 and −0.74 respectively, and human activities had exerted considerable pressure on the ecological environment

    Seasonal Variation of Biochemical Composition and Non-Volatile Taste Active Compounds in Pearl Oyster <em>Pinctada fucata martensii</em> from Two Selective Strains

    No full text
    Recently, a new pearl oyster Pinctada fucata martensii strain has begun to be cultured as seafood. In the present study, the seasonal variation (February and June) in biochemical composition and flavor compounds in two P. f. martensii strains (strain for pearl production was abbreviated to PP, and seafood was abbreviated to PE) were detected to compare the nutritional and flavor differences between them, and to provide a reference for the seasonal preference of consumers for eating P. f. martensii. The ratio of soft tissues in PE-Feb was significantly higher than that in PP-Feb (p p P. f. martensii strains in the same season, while the contents of these nutrients were significantly higher in February compared to June (p P. f. martensii strain in February were significantly higher than those in June (p p p P. f. martensii strain harvest in February is rich in protein, glycogen, PUFA (DHA and EPA), taurine, succinic acid, and betaine, which could provide healthy nutrition and a good flavor for humans

    Aqueous Cationic Fluorinated Polyurethane for Application in Novel UV-Curable Cathodic Electrodeposition Coatings

    No full text
    Aqueous polyurethane is an environmentally friendly, low-cost, high-performance resin with good abrasion resistance and strong adhesion. Cationic aqueous polyurethane is limited in cathodic electrophoretic coatings due to its complicated preparation process and its poor stability and single performance after emulsification and dispersion. The introduction of perfluoropolyether alcohol (PFPE-OH) and light curing technology can effectively improve the stability of aqueous polyurethane emulsions, and thus enhance the functionality of coating films. In this paper, a new UV-curable fluorinated polyurethane-based cathodic electrophoretic coating was prepared using cationic polyurethane as a precursor, introducing PFPE-OH capping, and grafting hydroxyethyl methacrylate (HEMA). The results showed that the presence of perfluoropolyether alcohol in the structure affected the variation of the moisture content of the paint film after flash evaporation. Based on the emulsion particle size and morphology tests, it can be assumed that the fluorinated cationic polyurethane emulsion is a core–shell structure with hydrophobic ends encapsulated in the polymer and hydrophilic ends on the outer surface. After abrasion testing and baking, the fluorine atoms of the coating were found to increase from 8.89% to 27.34%. The static contact angle of the coating to water was 104.6 ± 3°, and the water droplets rolled off without traces, indicating that the coating is hydrophobic. The coating has excellent thermal stability and tensile properties. The coating also passed the tests of impact resistance, flexibility, adhesion, and resistance to chemical corrosion in extreme environments. This study provides a new idea for the construction of a new and efficient cathodic electrophoretic coating system, and also provides more areas for the promotion of cationic polyurethane to practical applications

    An Open-Boundary Locally Weighted Dynamic Time Warping Method for Cropland Mapping

    No full text
    This paper proposes an open-boundary locally weighted dynamic time warping (OLWDTW) method using MODIS Normalized Difference Vegetation Index (NDVI) time-series data for cropland recognition. The method solves the problem of flexible planting times for crops in Southeast Asia, which has sufficient thermal and water conditions. For NDVI time series starting at the beginning of the year and terminating at the end of the year, the method can separate the non-growing season cycle and growing season cycle for crops. The non-growing season cycle may provide some useful information for crop recognition, such as soil conditions. However, the shape of the growing season’s NDVI time series for crops is the key to separating cropland from other land cover types because the shape contains all of the crop growth information. The principle of the OLWDTW method is to enhance the effects of the growing season cycle on the NDVI time series by adding a local weight to the growing season when comparing the similarity of time series based on the open-boundary dynamic time warping (DTW) method. Experiments with two satellite datasets located near the Khorat Plateau in the Lower Mekong Basin validate that OLWDTW effectively improves the precision of cropland recognition compared to a non-weighted open-boundary DTW method in terms of overall accuracy. The method’s classification accuracy on cropland exceeds the non-weighted open-boundary DTW by 5–7%. In future studies, an open-boundary self-adaption locally weighted DTW and a more effective combination rule for different crop types should be explored for the method’s best performance and highest extraction accuracy for cropland

    Dual-polarized multiplexed meta-holograms utilizing coding metasurface

    No full text
    In this paper, a novel method is proposed to achieve two distinct information channels by simultaneously manipulating both the transmitted cross- and co-polarized components of a 1-bit coding metasurface under linearly polarized incidence. Compared to previously demonstrated incidence-switchable or position multiplexed holograms, our proposed coding meta-hologram can simultaneously project two independent holographic images without inevitable change of the incidence state and can at the same time also avoid crosstalk between different channels. Moreover, the orientation of the double-layered split ring (SR) apertures is specially designed to be 45° or 135° to achieve identical multiplexed functionality for both x-polarized and y-polarized incidences. The proof-of-concept experimental demonstrations present total transmittance efficiency above 30% for the dual linearly polarized incidences at 15 GHz, and good imaging performances with 53.98%/48.18% imaging efficiency, 1.55%/1.46% RMSE, and 29.9/28.72 peak signal-to-noise ratio for the cross-/co-polarized channels under y-polarized incidence, and 47.27%/45.75% imaging efficiency, 1.55%/1.43% RMSE, and 18.74/25.93 peak signal-to-noise ratio under x-polarized incidence, demonstrating great potential of the proposed multiplexed coding meta-hologram in practical applications such as data storage and information processing
    corecore