9 research outputs found
on some discrete Bonnesen-style isoperimetric inequalities
This article deals with the sharp discrete isoperimetric inequalities in
analysis and geometry for planar convex polygons. First, the analytic
isoperimetric inequalities based on Schur convex function are established. In
the wake of the analytic isoperimetric inequalities, Bonnesen-style
isoperimetric inequalities and inverse Bonnesen-style inequalities for the
planar convex polygons are obtained.Comment: 17 pages, 2 figure
Transcriptome analyses provide insights into the expression pattern and sequence similarity of several taxol biosynthesis-related genes in three Taxus species
Abstract Background Taxol is an efficient anticancer drug; however, the accumulation of taxoids can vary hugely among Taxus species. The mechanism underlying differential accumulation of taxoids is largely unknown. Thus, comparative analysis of the transcriptomes in three Taxus species, including T. media, T. mairei and T. cuspidata, was performed. Results KEGG enrichment analysis revealed that the diterpenoid biosynthesis and cytochrome P450 pathways were significantly enriched in different comparisons. Differential expressions of these taxol biosynthesis related genes might be a potential explanation for the interspecific differential accumulation of taxol and its derivatives. Besides, the sequences of several MEP pathway-associated genes, such as DXS, DXR, MCT, CMK, MDS, HDS, HDR, IPPI, and GGPPS, were re-assembled based on independent transcriptomes from the three Taxus species. Phylogenetic analysis of these MEP pathway-associated enzymes also showed a high sequence similarity between T. media and T. cuspidata. Moreover, 48 JA-related transcription factor (TF) genes, including 10 MYBs, 5 ERFs, 4 RAPs, 3 VTCs, and 26 other TFs, were analyzed. Differential expression of these JA-related TF genes suggested distinct responses to exogenous JA applications in the three Taxus species. Conclusions Our results provide insights into the expression pattern and sequence similarity of several taxol biosynthesis-related genes in three Taxus species. The data give us an opportunity to reveal the mechanism underlying the variations in the taxoid contents and to select the highest-yielding Taxus species
Catalytic Asymmetric Formal Aza-Diels–Alder Reactions of α,β-Unsaturated Ketones and 3<i>H</i>‑Indoles
Asymmetric formal aza-Diels–Alder
reactions with α,β-unsaturated
ketones and 3<i>H</i>-indoles with disubstituted groups
on the C3 position catalyzed by primary amine-thiourea bifunctional
catalyst have been developed. The reactions produced chiral hexahydropyrido-[1,2-<i>a</i>]-indole-2-ones in high yields with excellent diastereo-
and enantioselectivities
Comparative metabolomics reveals the metabolic variations between two endangered Taxus species (T. fuana and T. yunnanensis) in the Himalayas
Abstract Background Plants of the genus Taxus have attracted much attention owing to the natural product taxol, a successful anti-cancer drug. T. fuana and T. yunnanensis are two endangered Taxus species mainly distributed in the Himalayas. In our study, an untargeted metabolomics approach integrated with a targeted UPLC-MS/MS method was applied to examine the metabolic variations between these two Taxus species growing in different environments. Results The level of taxol in T. yunnanensis is much higher than that in T. fuana, indicating a higher economic value of T. yunnanensis for taxol production. A series of specific metabolites, including precursors, intermediates, competitors of taxol, were identified. All the identified intermediates are predominantly accumulated in T. yunnanensis than T. fuana, giving a reasonable explanation for the higher accumulation of taxol in T. yunnanensis. Taxusin and its analogues are highly accumulated in T. fuana, which may consume limited intermediates and block the metabolic flow towards taxol. The contents of total flavonoids and a majority of tested individual flavonoids are significantly accumulated in T. fuana than T. yunnanensis, indicating a stronger environmental adaptiveness of T. fuana. Conclusions Systemic metabolic profiling may provide valuable information for the comprehensive industrial utilization of the germplasm resources of these two endangered Taxus species growing in different environments
Gene Expression Profiling in Human Fetal Liver and Identification of Tissue- and Developmental-Stage-Specific Genes through Compiled Expression Profiles and Efficient Cloning of Full-Length cDNAs
Fetal liver intriguingly consists of hepatic parenchymal cells and hematopoietic stem/progenitor cells. Human fetal liver aged 22 wk of gestation (HFL22w) corresponds to the turning point between immigration and emigration of the hematopoietic system. To gain further molecular insight into its developmental and functional characteristics, HFL22w was studied by generating expressed sequence tags (ESTs) and by analyzing the compiled expression profiles of liver at different developmental stages. A total of 13,077 ESTs were sequenced from a 3′-directed cDNA library of HFL22w, and classified as follows: 5819 (44.5%) matched to known genes; 5460 (41.8%) exhibited no significant homology to known genes; and the remaining 1798 (13.7%) were genomic sequences of unknown function, mitochondrial genomic sequences, or repetitive sequences. Integration of ESTs of known human genes generated a profile including 1660 genes that could be divided into 15 gene categories according to their functions. Genes related to general housekeeping, ESTs associated with hematopoiesis, and liver-specific genes were highly expressed. Genes for signal transduction and those associated with diseases, abnormalities, or transcription regulation were also noticeably active. By comparing the expression profiles, we identified six gene groups that were associated with different developmental stages of human fetal liver, tumorigenesis, different physiological functions of Itoh cells against the other types of hepatic cells, and fetal hematopoiesis. The gene expression profile therefore reflected the unique functional characteristics of HFL22w remarkably. Meanwhile, 110 full-length cDNAs of novel genes were cloned and sequenced. These novel genes might contribute to our understanding of the unique functional characteristics of the human fetal liver at 22 wk. [The sequence data described in this paper have been submitted to the GenBank data library under the accession nos. listed in Table 6 herein