3 research outputs found
Modeling of Laser Melting Deposition Equipment Based on Digital Twin
With the rapid development of new-generation information technologies such as big data, cloud computing, Internet of Things, and mobile internet in traditional manufacturing, the development of intelligent manufacturing (IM) is accelerating. Digital twin is an important method to achieve the goal of IM, and provides an effective means for the integrated development of design and manufacturing (R & M). In view of the problems of long installation and debugging cycles, and process parameters requiring multiple trial and error in the research and development (R & D) process of laser melting deposition (LMD) equipment, this paper focuses on building an LMD equipment model based on digital twin technology. It involves performing virtual assembly, motion setting, collision inspection, and PLC debugging, thereby providing an innovative method and insights for improving the R & D efficiency of the IM of LMD equipment
Modeling of Laser Melting Deposition Equipment Based on Digital Twin
With the rapid development of new-generation information technologies such as big data, cloud computing, Internet of Things, and mobile internet in traditional manufacturing, the development of intelligent manufacturing (IM) is accelerating. Digital twin is an important method to achieve the goal of IM, and provides an effective means for the integrated development of design and manufacturing (R & M). In view of the problems of long installation and debugging cycles, and process parameters requiring multiple trial and error in the research and development (R & D) process of laser melting deposition (LMD) equipment, this paper focuses on building an LMD equipment model based on digital twin technology. It involves performing virtual assembly, motion setting, collision inspection, and PLC debugging, thereby providing an innovative method and insights for improving the R & D efficiency of the IM of LMD equipment
Study on the Microstructure and Properties of Welded Joints of Laser Shock Peening on HC420LA Low-Alloy High-Tensile Steel
Laser shock peening is a promising surface strengthening technology that can effectively improve the mechanical properties of materials. This paper is based on the laser shock peening process for HC420LA low-alloy high-strength steel weldments. Contrast analysis of the evolution of the microstructure, residual stress distribution and mechanical properties of the welded joints before and after the laser shock peening on each region is carried out; a combination of tensile fracture and impact toughness fracture morphology analyses of laser shock peening on the welded joint strength and toughness regulation mechanism are also completed. The results show that the laser shock peening can refine the microstructure of the welded joint effectively, the microhardness of all areas of the joint increases and the weld residual tensile stresses are transformed into beneficial residual compressive stresses, affecting a layer depth of 600 μm. In addition, the strength and impact toughness of welded joints of HC420LA low-alloy high-strength steel are improved