32 research outputs found

    Solid-state fermentation of Apocynum venetum L. by Aspergillus niger: Effect on phenolic compounds, antioxidant activities and metabolic syndrome-associated enzymes

    Get PDF
    This study aimed to evaluate the effect of solid-state fermentation (SSF) with Aspergillus niger on the total phenolic content (TPC), the total flavonoid content (TFC), individual phenolic contents, and antioxidant and inhibitory activities against metabolic syndrome-associated enzymes in an ethanol extract from Apocynum venetum L. (AVL). TPC, TFC, and the contents of quercetin and kaempferol during SSF were 1.52-, 1.33-, 3.64-, and 2.22-fold higher than those of native AVL in the ethyl acetate (EA) subfraction of the ethanol extract. The ABTS·+, DPPH· scavenging, and inhibitory activities against α-glucosidase and pancreatic lipase were found to be highest in the EA subfraction. Fermentation significantly increased the ABTS radical cation, DPPH radical scavenging, and pancreatic lipase inhibitory activities by 1.33, 1.39, and 1.28 times, respectively. TPC showed a significantly positive correlation with antioxidant activities or inhibition against metabolic syndrome-associated enzymes. This study provides a theoretical basis for producing tea products with enhanced antioxidant, antidiabetic, and antihyperlipidemic activities

    Biodegradation of ramie stalk by Flammulina velutipes: mushroom production and substrate utilization

    No full text
    Abstract In the textile industry, ramie stalk is byproducts with a low economic value. The potential use of this leftover as a substrate ingredient for Flammulina velutipes (F. velutipe) cultivation was evaluated. The degradation and utilization of ramie stalk by F. velutipes was evaluated through mushroom production, lignocelluloses degradation and lignocellulolytic enzymes activity. The best substrate mixture for F. velutipes cultivation comprised 50% ramie stalk, 20% cottonseed hulls, 25% wheat bran, 4% cornstarch and 2% CaCO3. The highest biological efficiency of fruiting bodies was reached 119.7%. F. velutipes appears to degrade 12.7–32.0% lignin, 14.4–30.2% cellulose and 9.3–25.7% hemicellulose during cultivation on the different substrates. The results of enzymes activities showed that laccase and peroxidase were higher before fruiting; while cellulase and hemicellulase showed higher activities after fruiting. The biological efficiency of fruiting bodies was positively correlated with the activities of cellulase, hemicellulase and ligninolytic enzyme. The results of this study demonstrate that ramie stalk can be used as an effective supplement for increasing mushroom yield in F. velutipes

    Design and Application of a Deep-Sea Engineering Geology In Situ Test System

    No full text
    Seabed soil layer composed of soft sediments, which has a high water content, low bulk density and low shear strength, has great influence on deep-sea engineering devices. Therefore, accurate measurement of the mechanical properties of seabed sediments is a prerequisite for the construction and safe operation of deep-sea projects. In this study, a deep-sea engineering geology in situ test system was developed to measure cone resistance, sleeve friction, pore pressure and shear resistance in seafloor sediments. The system was tested on land, and the feasibility of the system was verified. We conducted sea trials in the South China Sea and acquired datasets from five stations. The data were analyzed using the Eslami–Fellenius soil classification map, and the soil classification of the site was obtained. The obtained values of cone resistance, sleeve friction, pore pressure and shear resistance can provide mechanical data support for deep-sea engineering in this area

    Design and Application of a Deep-Sea Engineering Geology In Situ Test System

    No full text
    Seabed soil layer composed of soft sediments, which has a high water content, low bulk density and low shear strength, has great influence on deep-sea engineering devices. Therefore, accurate measurement of the mechanical properties of seabed sediments is a prerequisite for the construction and safe operation of deep-sea projects. In this study, a deep-sea engineering geology in situ test system was developed to measure cone resistance, sleeve friction, pore pressure and shear resistance in seafloor sediments. The system was tested on land, and the feasibility of the system was verified. We conducted sea trials in the South China Sea and acquired datasets from five stations. The data were analyzed using the Eslami–Fellenius soil classification map, and the soil classification of the site was obtained. The obtained values of cone resistance, sleeve friction, pore pressure and shear resistance can provide mechanical data support for deep-sea engineering in this area

    Effects of Different Substrates on Lignocellulosic Enzyme Expression, Enzyme Activity, Substrate Utilization and Biological Efficiency of Pleurotus Eryngii

    No full text
    Background/Aims: Pleurotus eryngii is one of the most valued and delicious mushrooms which are commercially cultivated on various agro-wastes. How different substrates affect lignocellulosic biomass degradation, lignocellulosic enzyme production and biological efficiency in Pleurotus eryngii was unclear. Methods and Results: In this report, Pleurotus eryngii was cultivated in substrates including ramie stalks, kenaf stalks, cottonseed hulls and bulrush stalks. The results showed that ramie stalks and kenaf stalks were found to best suitable to cultivate Pleurotus eryngii with the biological efficiency achieved at 55% and 57%, respectively. In order to establish correlations between different substrates and lignocellulosic enzymes expression, the extracellular proteins from four substrates were profiled with high throughput TMT-based quantitative proteomic approach. 241 non-redundant proteins were identified and 74 high confidence lignocellulosic enzymes were quantified. Most of the cellulases, hemicellulases and lignin depolymerization enzymes were highly up-regulated when ramie stalks and kenaf stalks were used as carbon sources. The enzyme activities results suggested cellulases, hemicellulases and lignin depolymerization enzymes were significantly induced by ramie stalks and kenaf stalks. Conclusion: The lignocelluloses degradation, most of the lignocellulosic enzymes expressions and activities of Pleurotus eryngii had positive correlation with the biological efficiency, which depend on the nature of lignocellulosic substrates. In addition, the lignocellulosic enzymes expression profiles during Pleurotus eryngii growth in different substrates were obtained. The present study suggested that most of the lignocellulosic enzymes expressions and activities can be used as tools for selecting better performing substrates for commercial mushroom cultivation

    Co-fermentation of succinic acid and ethanol from sugarcane bagasse based on full hexose and pentose utilization and carbon dioxide reduction

    No full text
    The full utilization of carbohydrates in lignocellulosic biomass is essential for an efficient biorefining process. In this study, co-fermentation was performed for processing ethanol and succinic from sugarcane bagasse. By optimizing the co-fermentation conditions, nutrition and feeding strategies, a novel process was developed to make full utilization of the glucose and xylose in the hydrolysate of sugarcane bagasse. The achieved concentrations of succinic acid and ethanol reached to 22.1 and 22.0 g/L, respectively, and could realize the conversion of 100 g SCB raw material into 8.6 g ethanol and 8.7 g succinic acid. It is worth mentioning that the CO2 released from S. cerevisiae in co-fermentation system was recycled by A. succinogenes to synthesize succinic acid, realized CO2 emission reduction in the process of lignocellulosic biomass biorefinery. This study provided a clue for efficient biorefinery of lignocellulosic biomass and reduction greenhouse gas emissions

    Efficient production of a cyclic dipeptide (cyclo-TA) using heterologous expression system of filamentous fungus Aspergillus oryzae

    No full text
    Abstract Background Cyclic dipeptides are an important class of natural products owing to their structural diversity and biological activities. In fungi, the cyclo-ring system is formed through the condensation of two α-amino acids via non-ribosomal peptide synthetase (NRPS). However, there are few investigations on the functional identification of this enzyme. Additionally, information on how to increase the production of cyclic dipeptide molecules is relatively scarce. Results We isolated the Eurotium cristatum NWAFU-1 fungus from Jing-Wei Fu brick tea, whose fermentation metabolites contain echinulin-related cyclic dipeptide molecules. We cloned the cirC gene, encoding an NRPS, from E. Cristatum NWAFU-1 and transferred it into the heterologous host Aspergillus oryzae. This transformant produced a novel metabolite possessing an l-tryptophan-l-alanine cyclic dipeptide backbone (Cyclo-TA). Based on the results of heterologous expression and microsomal catalysis, CriC is the first NRPS characterized in fungi that catalyzes the formation of a cyclic dipeptide from l-tryptophan and l-alanine. After substrate feeding, the final yield reached 34 mg/L. In this study, we have characterized a novel NRPS and developed a new method for cyclic dipeptide production. Conclusions In this study we successfully expressed the E. Cristatum NWAFU-1 criC gene in A. oryzae to efficiently produce cyclic dipeptide compounds. Our findings indicate that the A. oryzae heterologous expression system constitutes an efficient method for the biosynthesis of fungal Cyclic dipeptides
    corecore