4 research outputs found

    Stereo Matching Based on Immune Neural Network in Abdomen Reconstruction

    No full text
    Stereo feature matching is a technique that finds an optimal match in two images from the same entity in the three-dimensional world. The stereo correspondence problem is formulated as an optimization task where an energy function, which represents the constraints on the solution, is to be minimized. A novel intelligent biological network (Bio-Net), which involves the human B-T cells immune system into neural network, is proposed in this study in order to learn the robust relationship between the input feature points and the output matched points. A model from input-output data (left reference point-right target point) is established. In the experiments, the abdomen reconstructions for different-shape mannequins are then performed by means of the proposed method. The final results are compared and analyzed, which demonstrate that the proposed approach greatly outperforms the single neural network and the conventional matching algorithm in precise. Particularly, as far as time cost and efficiency, the proposed method exhibits its significant promising and potential for improvement. Hence, it is entirely considered as an effective and feasible alternative option for stereo matching

    Simulations of viscoelastic fluids using a coupled lattice Boltzmann method: Transition states of elastic instabilities

    No full text
    Elastic instabilities could happen in viscoelastic flows as the Weissenberg number is enlarged, and this phenomenon makes the numerical simulation of viscoelastic fluids more difficult. In this study, we introduce a coupled lattice Boltzmann method to solve the equations of viscoelastic fluids, which has a great capability of simulating the high Weissenberg number problem. Different from some traditional methods, two kinds of distribution functions are defined respectively for the evolution of the momentum and stress tensor equations. We mainly aim to investigate some key factors of the symmetry-breaking transition induced by elastic instability of viscoelastic fluids using this numerical coupled lattice Boltzmann method. In the results, we firstly find that the ratio of kinematical viscosity has an important influence on the transition of the elastic instability; the transition between the single stationary and cycling dominant vortex can be controlled via changing the ratio of kinematical viscosity in a periodic extensional flow. Finally, we can also observe a new transition state of instability for the flow showing the banded structure at higher Weissenberg number

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore