28 research outputs found

    A Community Detection and Graph Neural Network Based Link Prediction Approach for Scientific Literature

    Full text link
    This study presents a novel approach that synergizes community detection algorithms with various Graph Neural Network (GNN) models to bolster link prediction in scientific literature networks. By integrating the Louvain community detection algorithm into our GNN frameworks, we consistently enhance performance across all models tested. For example, integrating Louvain with the GAT model resulted in an AUC score increase from 0.777 to 0.823, exemplifying the typical improvements observed. Similar gains are noted when Louvain is paired with other GNN architectures, confirming the robustness and effectiveness of incorporating community-level insights. This consistent uplift in performance reflected in our extensive experimentation on bipartite graphs of scientific collaborations and citations highlights the synergistic potential of combining community detection with GNNs to overcome common link prediction challenges such as scalability and resolution limits. Our findings advocate for the integration of community structures as a significant step forward in the predictive accuracy of network science models, offering a comprehensive understanding of scientific collaboration patterns through the lens of advanced machine learning techniques

    Detection of Fuchs’ Uveitis Syndrome From Slit-Lamp Images Using Deep Convolutional Neural Networks in a Chinese Population

    Get PDF
    Fuchs’ uveitis syndrome (FUS) is one of the most under- or misdiagnosed uveitis entities. Many undiagnosed FUS patients are unnecessarily overtreated with anti-inflammatory drugs, which may lead to serious complications. To offer assistance for ophthalmologists in the screening and diagnosis of FUS, we developed seven deep convolutional neural networks (DCNNs) to detect FUS using slit-lamp images. We also proposed a new optimized model with a mixed “attention” module to improve test accuracy. In the same independent set, we compared the performance between these DCNNs and ophthalmologists in detecting FUS. Seven different network models, including Xception, Resnet50, SE-Resnet50, ResNext50, SE-ResNext50, ST-ResNext50, and SET-ResNext50, were used to predict FUS automatically with the area under the receiver operating characteristic curves (AUCs) that ranged from 0.951 to 0.977. Our proposed SET-ResNext50 model (accuracy = 0.930; Precision = 0.918; Recall = 0.923; F1 measure = 0.920) with an AUC of 0.977 consistently outperformed the other networks and outperformed general ophthalmologists by a large margin. Heat-map visualizations of the SET-ResNext50 were provided to identify the target areas in the slit-lamp images. In conclusion, we confirmed that a trained classification method based on DCNNs achieved high effectiveness in distinguishing FUS from other forms of anterior uveitis. The performance of the DCNNs was better than that of general ophthalmologists and could be of value in the diagnosis of FUS

    Three-directional contact force model for the ball spinning of a thin-walled tube

    No full text
    This paper provides a computational model for calculating three-directional ball spinning force in accordance with the theory of space analytic geometry. The contact boundary equation of the ball and tube is obtained. By projection, the two-dimensional curve in each coordinate plane is acquired. The projected area of the contact zone in the coordinate plane is calculated through the curve integral. It is assumed that the average pressure of the forming region is nearly equal to that when the steel ball is pressed into the tube. Hence, the unit pressure of the deformation zone is obtained. Then, the spinning component force and total spinning force are calculated. Using a Tu1 thin-walled tube of oxygen-free copper as experimental object, a ball spinning experiment is conducted, the axial spinning components force are tested and the ball spinning force calculation model is verified. Based on deformation rate, backward sliding accumulation and extension and frictional heating, the factors influencing calculation error are analysed at the end of this paper

    Economic evaluation of FLOT and ECF/ECX perioperative chemotherapy in patients with resectable gastric or gastro-oesophageal junction adenocarcinoma

    No full text
    Objective The perioperative chemotherapy with fluorouracil, leucovorin, oxaliplatin plus docetaxel (FLOT) was recommended by the Chinese Society of Clinical Oncology Guidelines for gastric cancer (2018 edition) for patients with resectable gastric or gastro-oesophageal junction adenocarcinoma (class IIA). However, the economic impact of FLOT chemotherapy in China remains unclear. The analysis aimed to compare the cost-effectiveness of FLOT versus epirubicin, cisplatin plus fluorouracil or capecitabine (ECF/ECX) in patients with locally advanced resectable tumours.Design We developed a Markov model to compare the healthcare and economic outcomes of FLOT and ECF/ECX in patients with resectable gastric or gastro-oesophageal junction adenocarcinoma. Costs were estimated from the perspective of Chinese healthcare system. Clinical and utility inputs were derived from the FLOT4 phase II/III clinical trial and published literature. Sensitivity analyses were employed to assess the robustness of our result. The annual discount rate for costs and health outcomes was set at 5%.Outcome measures The primary outcome of incremental cost-effectiveness ratios (ICERs) was calculated as the cost per quality-adjusted life years (QALYs).Results The base-case analysis found that compared with ECF/ECX, the use of FLOT chemotherapy was associated with an additional 1.08 QALYs, resulting in an ICER of US851/QALY.OnewaysensitivityanalysisresultssuggestedthattheHRofoverallsurvivalandprogressionfreesurvivalhadthegreatestimpactontheICER.ProbabilisticsensitivityanalysisdemonstratedthatFLOTwasmorelikelytobecosteffectivecomparedwithECF/ECXatawillingnesstopaythresholdofUS851/QALY. One-way sensitivity analysis results suggested that the HR of overall survival and progression-free survival had the greatest impact on the ICER. Probabilistic sensitivity analysis demonstrated that FLOT was more likely to be cost-effective compared with ECF/ECX at a willingness-to-pay threshold of US31 513/QALY.Conclusions For patients with locally advanced resectable tumours, the FLOT chemotherapy is a cost-effective treatment option compared with ECF/ECX in China.Trial registration number NCT01216644

    Efficient approach to cyclic scheduling of single-arm cluster tools with chamber cleaning operations and wafer residency time constraint

    No full text
    In semiconductor manufacturing, with the shrinking down of wafer circuit widths, a strict quality control is required for wafer fabrication processes, resulting in that after a wafer being processed and removed from a chamber, a cleaning operation that takes significant time is performed for eliminating the chemical residual. Such a cleaning operation makes a traditional backward strategy for single-arm cluster tools inefficient. By the existing studies, it is shown that the productivity can be improved if some numbers of chambers at a step are kept empty. With this idea, an extended backward strategy is proposed by deciding the optimal number of empty chambers. Based on such a strategy, this work studies the challenging problem for scheduling a single-arm cluster tool with both chamber cleaning operations and wafer residency time constraint for the first time. By building a timed Petri net model for the system, two linear programs are proposed to determine the minimal cycle time and test the existence of a feasible schedule and find it if existing. At last, two industrial examples are used to demonstrate the obtained results.NRF (Natl Research Foundation, S’pore)Accepted versio

    Structures and antifouling properties of self-assembled zwitterionic peptide monolayers : effects of peptide charge distributions and divalent cations

    No full text
    Zwitterionic peptides are great candidates as antifouling coating materials in many biomedical applications. We investigated the structure and antifouling properties of surface-tethered zwitterionic peptide monolayers with different peptide chain lengths and charge distributions using a combination of surface plasma resonance, atomic force microscopy, and all atomistic molecular dynamics (MD) simulation techniques. Our results demonstrate that zwitterionic peptides with more zwitterionic lysine (K) and glutamic acid (E) repeating units exhibit better antifouling performance. The block charge distributions of the positive and negative charges in the peptides (having multiple positive charges next to the same amount of negative charges), although affecting the structure of the peptide molecules, do not significantly change the antifouling properties of the peptide monolayers in the solutions containing monovalent ions. However, divalent cations, Ca2+ and Mg2+, in solution can significantly alter the structure and lower the antifouling performance of the zwitterionic peptide monolayers, especially with the sequences of block charges. All atomistic MD simulations quantitatively reveal that the divalent cations in solution lead to more interchain electrostatic cross-links between peptide chains, especially for peptides with block charges, which causes dehydration of the zwitterionic peptides and diminishes their antifouling performances.NRF (Natl Research Foundation, S’pore)MOE (Min. of Education, S’pore)Accepted versio

    Association of genetic variations in PTPN2 and CD122 with ocular Behcet's disease

    No full text
    Background Protein tyrosine phosphatases (PTPs) play critical roles in human autoimmunity. Previous studies found that PTPN2 may be the key regulatory factor in the T-cell-mediated immune response. PTPN2 regulates the Janus kinase/signal transducers and activators of transcription pathway by inhibiting signalling via the interleukin (IL)-2 receptor (CD122). An association between genetic variations in PTPN2 and CD122 with ocular Behcet's disease (BD) has not yet been addressed and was therefore the purpose of this study. Methods A two-stage case-control study was performed in 906 patients with ocular BD and 2178 healthy controls. Genotyping analysis of 11 single nucleotide polymorphisms was carried out. The expression of PTPN2 in peripheral blood mononuclear cells (PBMCs) was quantified by real-time PCR and cytokine production was measured by ELISA. Results The frequency of the GG genotype of PTPN2-rs7234029 was significantly lower in patients with ocular BD (p=1.94x10(-5), p(c)=8.34x10(-4), OR=0.466). Stratification according to gender showed that rs7234029 was significantly associated with BD in men. A stratified analysis according to the main clinical features showed that rs7234029 was significantly associated with genital ulcers, skin lesions and a positive pathergy test. No association could be detected between BD and CD122 gene polymorphisms. Functional studies showed that rs7234029 GG genotype carriers had a higher PNPT2 mRNA expression level than those which carrying the AA or AG genotype, and a decreased secretion of IL-17 and tumour necrosis factor-alpha was seen by PBMCs from GG carriers. No significant difference could be detected concerning IL-1 or IL-6 production by stimulated PBMCs between the different genotype groups. Conclusions This study shows that a PTPN2-rs7234029 polymorphism is associated with ocular BD and is strongly influenced by gender. In addition, our results suggest that the genetic association with PTPN2 may involve the regulation of PTPN2 mRNA expression and cytokine secretion
    corecore