5 research outputs found

    Differential metabolomics analysis allows characterization of diversity of metabolite networks between males and females.

    No full text
    Females and males are known to have different abilities to cope with stress and disease. This study was designed to investigate the effect of sex on properties of a complex interlinked network constructed of central biochemical metabolites. The study involved the blood collection and analysis of a large set of blood metabolic markers from a total of 236 healthy participants, which included 140 females and 96 males. Metabolic profiling yielded concentrations of 168 metabolites for each subject. A differential correlation network analysis approach was developed for this study that allowed detection and characterization of interconnection differences in metabolites in males and females. Through topological analysis of the differential network that depicted metabolite differences in the sexes, we identified metabolites with high centralities in this network. These key metabolites were identified as 10 phosphatidylcholines (PCaaC34:4, PCaaC36:6, PCaaC34:3, PCaaC42:2, PCaeC38:1, PCaeC38:2, PCaaC40:1, PCaeC34:1, PC aa C32:1 and PC aa C40:6) and 4 acylcarnitines (C3-OH, C7-DC, C3 and C0). Identification of these metabolites may help further studies of sex-specific differences in the metabolome that may underlie different responses to stress and disease in males and females

    Circular RNA circATP9A promotes non-small cell lung cancer progression by interacting with HuR and by promoting extracellular vesicles-mediated macrophage M2 polarization

    No full text
    Abstract Background CircRNA is recognized for its significant regulatory function across various cancers. However, its regulatory role in non-small cell lung cancer (NSCLC) is still largely uncharted. Methods Analysis based on public databases is completed using R software. circATP9A was identified by two circRNA datasets of NSCLC from the Gene Expression Omnibus database. To examine the impact of circATP9A on the phenotype of NSCLC, we conducted both in vitro and in vivo functional experiments. The mRNA and protein levels of specific molecules were determined through quantitative real-time PCR and western blot assays. RNA pulldown and RNA immunoprecipitation assays were performed to verify the interaction between RNA and protein. The functional role of extracellular vesicles (EVs)-circATP9A on tumor-associated macrophage (TAM) polarization was assessed using co-culture system and cell flow cytometry. Results Here, we elucidates the functional role of circATP9A in NSCLC. We demonstrated that circATP9A can foster the progression of NSCLC through in vivo and in vitro experiments. From a mechanistic standpoint, circATP9A can interact with the HuR protein to form an RNA–protein complex, subsequently amplifying the mRNA and protein levels of the target gene NUCKS1. Further, the PI3K/AKT/mTOR signaling was identified as the downstream pathways of circATP9A/HuR/NUCKS1 axis. More notably, hnRNPA2B1 can mediate the incorporation of circATP9A into EVs. Subsequently, these EVs containing circATP9A induce the M2 phenotype of TAMs, thereby facilitating NSCLC development. Conclusions Our discoveries indicate that circATP9A could serve as a promising diagnostic indicator and a therapeutic target for NSCLC
    corecore