357 research outputs found

    Worst-Case Linear Discriminant Analysis as Scalable Semidefinite Feasibility Problems

    Full text link
    In this paper, we propose an efficient semidefinite programming (SDP) approach to worst-case linear discriminant analysis (WLDA). Compared with the traditional LDA, WLDA considers the dimensionality reduction problem from the worst-case viewpoint, which is in general more robust for classification. However, the original problem of WLDA is non-convex and difficult to optimize. In this paper, we reformulate the optimization problem of WLDA into a sequence of semidefinite feasibility problems. To efficiently solve the semidefinite feasibility problems, we design a new scalable optimization method with quasi-Newton methods and eigen-decomposition being the core components. The proposed method is orders of magnitude faster than standard interior-point based SDP solvers. Experiments on a variety of classification problems demonstrate that our approach achieves better performance than standard LDA. Our method is also much faster and more scalable than standard interior-point SDP solvers based WLDA. The computational complexity for an SDP with mm constraints and matrices of size dd by dd is roughly reduced from O(m3+md3+m2d2)\mathcal{O}(m^3+md^3+m^2d^2) to O(d3)\mathcal{O}(d^3) (m>dm>d in our case).Comment: 14 page

    RandomBoost: Simplified Multi-class Boosting through Randomization

    Full text link
    We propose a novel boosting approach to multi-class classification problems, in which multiple classes are distinguished by a set of random projection matrices in essence. The approach uses random projections to alleviate the proliferation of binary classifiers typically required to perform multi-class classification. The result is a multi-class classifier with a single vector-valued parameter, irrespective of the number of classes involved. Two variants of this approach are proposed. The first method randomly projects the original data into new spaces, while the second method randomly projects the outputs of learned weak classifiers. These methods are not only conceptually simple but also effective and easy to implement. A series of experiments on synthetic, machine learning and visual recognition data sets demonstrate that our proposed methods compare favorably to existing multi-class boosting algorithms in terms of both the convergence rate and classification accuracy.Comment: 15 page

    Fast Supervised Hashing with Decision Trees for High-Dimensional Data

    Get PDF
    Supervised hashing aims to map the original features to compact binary codes that are able to preserve label based similarity in the Hamming space. Non-linear hash functions have demonstrated the advantage over linear ones due to their powerful generalization capability. In the literature, kernel functions are typically used to achieve non-linearity in hashing, which achieve encouraging retrieval performance at the price of slow evaluation and training time. Here we propose to use boosted decision trees for achieving non-linearity in hashing, which are fast to train and evaluate, hence more suitable for hashing with high dimensional data. In our approach, we first propose sub-modular formulations for the hashing binary code inference problem and an efficient GraphCut based block search method for solving large-scale inference. Then we learn hash functions by training boosted decision trees to fit the binary codes. Experiments demonstrate that our proposed method significantly outperforms most state-of-the-art methods in retrieval precision and training time. Especially for high-dimensional data, our method is orders of magnitude faster than many methods in terms of training time.Comment: Appearing in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2014, Ohio, US

    Non-sparse Linear Representations for Visual Tracking with Online Reservoir Metric Learning

    Get PDF
    Most sparse linear representation-based trackers need to solve a computationally expensive L1-regularized optimization problem. To address this problem, we propose a visual tracker based on non-sparse linear representations, which admit an efficient closed-form solution without sacrificing accuracy. Moreover, in order to capture the correlation information between different feature dimensions, we learn a Mahalanobis distance metric in an online fashion and incorporate the learned metric into the optimization problem for obtaining the linear representation. We show that online metric learning using proximity comparison significantly improves the robustness of the tracking, especially on those sequences exhibiting drastic appearance changes. Furthermore, in order to prevent the unbounded growth in the number of training samples for the metric learning, we design a time-weighted reservoir sampling method to maintain and update limited-sized foreground and background sample buffers for balancing sample diversity and adaptability. Experimental results on challenging videos demonstrate the effectiveness and robustness of the proposed tracker.Comment: Appearing in IEEE Conf. Computer Vision and Pattern Recognition, 201
    • …
    corecore