1,653 research outputs found
Nonhomogeneous seawater Sr isotopic composition in the coastal oceans : a novel tool for tracing water masses and submarine groundwater discharge
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 12 (2011): Q05002, doi:10.1029/2010GC003372.Here we present high-precision (2σ = ±3 ppm) 87Sr/86Sr measurements in coastal waters, together with salinity, to evaluate water mass mixing and the influence of submarine groundwater discharge (SGD) in coastal waters and marginal seas. Nonhomogeneous Sr isotopic variations in water columns were documented in the Southern Okinawa Trough (SOT), South China Sea, and Kao-ping Canyon (KPC), where seawater 87Sr/86Sr varied up to 70 ppm. Seawater Sr isotopic composition changes only slightly in the upper 200 m of the SOT but was detectable and highly correlated with salinity, indicating a mixing between radiogenic North Pacific Tropical Water (high 87Sr/86Sr and high salinity) at 100–150 m and a less radiogenic component with low 87Sr/86Sr and low salinity at ∼200 m. Vertical profiles of seawater 87Sr/86Sr along the KPC show significant variations, suggesting dynamic mixing affected by continental inputs (i.e., river runoff and SGD) in this region. These results highlight the potential use of seawater Sr isotopes as a powerful tracer for determining mixing ratios and the dynamic mixing of oceanic water masses, especially in coastal and marginal seas.This
research was supported by a postdoctoral fellowship from Top
University (NCKU), Taiwan, to K.‐F. Huang and funds from
NSC and MOE, Taiwan, to C.‐F. You
A Bayesian measurement error model for two-channel cell-based RNAi data with replicates
RNA interference (RNAi) is an endogenous cellular process in which small
double-stranded RNAs lead to the destruction of mRNAs with complementary
nucleoside sequence. With the production of RNAi libraries, large-scale RNAi
screening in human cells can be conducted to identify unknown genes involved in
a biological pathway. One challenge researchers face is how to deal with the
multiple testing issue and the related false positive rate (FDR) and false
negative rate (FNR). This paper proposes a Bayesian hierarchical measurement
error model for the analysis of data from a two-channel RNAi high-throughput
experiment with replicates, in which both the activity of a particular
biological pathway and cell viability are monitored and the goal is to identify
short hair-pin RNAs (shRNAs) that affect the pathway activity without affecting
cell activity. Simulation studies demonstrate the flexibility and robustness of
the Bayesian method and the benefits of having replicates in the experiment.
This method is illustrated through analyzing the data from a RNAi
high-throughput screening that searches for cellular factors affecting HCV
replication without affecting cell viability; comparisons of the results from
this HCV study and some of those reported in the literature are included.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS496 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Predictors of psychiatric readmissions in the short- and long-term: a population-based study in taiwan
OBJECTIVES: To explore the risks and rates of readmission and their predictors 14 days, one year, and five years after discharge for the psychiatric population in Taiwan. METHODS: This was a prospective study based on claims from 44,237 first-time hospitalized psychiatric patients discharged in 2000, who were followed for up to five years after discharge. The cumulative incidence and incidence density of readmission were calculated for various follow-up periods after discharge, and Cox proportional hazard models were generated to identify the significant predictors for psychiatric readmission. RESULTS: The less than 14-day, one-year, and five-year cumulative incidences were estimated at 6.1%, 22.3%, and 37.8%, respectively. The corresponding figures for incidence density were 4.58, 1.04, and 0.69 per 1,000 person-days, respectively. Certain factors were significantly associated with increased risk of readmission irrespective of the length of follow-up, including male gender, length of hospital stay >15 days, economic poverty, a leading discharge diagnosis of schizophrenia/affective disorders, and residence in less-urbanized regions. Compared to children/adolescents, young adults (20-39 years) were significantly associated with increased risks of <one-year and <five-year readmissions, but not <14-day readmission. Additionally, hospital characteristics were significantly associated with increased risk of <14-day and <one-year readmission, but not with risk of <five-year readmission. CONCLUSIONS: This study found that the significant predictors for psychiatric readmission 14 days to five years after discharge were essentially the same except for patient's age and hospital accreditation level. This study also highlighted the importance of socioeconomic factors in the prediction of readmission
Formulation of novel lipid-coated magnetic nanoparticles as the probe for in vivo imaging
<p>Abstract</p> <p>Background</p> <p>Application of superparamagnetic iron oxide nanoparticles (SPIOs) as the contrast agent has improved the quality of magnetic resonance (MR) imaging. Low efficiency of loading the commercially available iron oxide nanoparticles into cells and the cytotoxicity of previously formulated complexes limit their usage as the image probe. Here, we formulated new cationic lipid nanoparticles containing SPIOs feasible for <it>in vivo </it>imaging.</p> <p>Methods</p> <p>Hydrophobic SPIOs were incorporated into cationic lipid 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and polyethylene-glycol-2000-1,2-distearyl-3-sn-phosphatidylethanolamine (PEG-DSPE) based micelles by self-assembly procedure to form lipid-coated SPIOs (L-SPIOs). Trace amount of Rhodamine-dioleoyl-phosphatidylethanolamine (Rhodamine-DOPE) was added as a fluorescent indicator. Particle size and zeta potential of L-SPIOs were determined by Dynamic Light Scattering (DLS) and Laser Doppler Velocimetry (LDV), respectively. HeLa, PC-3 and Neuro-2a cells were tested for loading efficiency and cytotoxicity of L-SPIOs using fluorescent microscopy, Prussian blue staining and flow cytometry. L-SPIO-loaded CT-26 cells were tested for <it>in vivo </it>MR imaging.</p> <p>Results</p> <p>The novel formulation generates L-SPIOs particle with the average size of 46 nm. We showed efficient cellular uptake of these L-SPIOs with cationic surface charge into HeLa, PC-3 and Neuro-2a cells. The L-SPIO-loaded cells exhibited similar growth potential as compared to unloaded cells, and could be sorted by a magnet stand over ten-day duration. Furthermore, when SPIO-loaded CT-26 tumor cells were injected into Balb/c mice, the growth status of these tumor cells could be monitored using optical and MR images.</p> <p>Conclusion</p> <p>We have developed a novel cationic lipid-based nanoparticle of SPIOs with high loading efficiency, low cytotoxicity and long-term imaging signals. The results suggested these newly formulated non-toxic lipid-coated magnetic nanoparticles as a versatile image probe for cell tracking.</p
UPS 2.0: unique probe selector for probe design and oligonucleotide microarrays at the pangenomic/ genomic level
<p>Abstract</p> <p>Background</p> <p>Nucleic acid hybridization is an extensively adopted principle in biomedical research, in which the performance of any hybridization-based method depends on the specificity of probes to their targets. To determine the optimal probe(s) for detecting target(s) from a sample cocktail, we developed a novel algorithm, which has been implemented into a web platform for probe designing. This probe design workflow is now upgraded to satisfy experiments that require a probe designing tool to take the increasing volume of sequence datasets.</p> <p>Results</p> <p>Algorithms and probe parameters applied in UPS 2.0 include GC content, the secondary structure, melting temperature (Tm), the stability of the probe-target duplex estimated by the thermodynamic model, sequence complexity, similarity of probes to non-target sequences, and other empirical parameters used in the laboratory. Several probe background options,<b><it>Unique probe within a group</it></b><it>,</it><b><it>Unique probe in a specific Unigene set</it></b><it>,</it><b><it>Unique probe based onthe pangenomic level</it></b><it>,</it> and <b><it>Unique Probe in the user-defined genome/transcriptome</it></b><it>,</it> are available to meet the scenarios that the experiments will be conducted. Parameters, such as salt concentration and the lower-bound Tm of probes, are available for users to optimize their probe design query. Output files are available for download on the result page. Probes designed by the UPS algorithm are suitable for generating microarrays, and the performance of UPS-designed probes has been validated by experiments.</p> <p>Conclusions</p> <p>The UPS 2.0 evaluates probe-to-target hybridization under a user-defined condition to ensure high-performance hybridization with minimal chance of non-specific binding at the pangenomic and genomic levels. The UPS algorithm mimics the target/non-target mixture in an experiment and is very useful in developing diagnostic kits and microarrays. The UPS 2.0 website has had more than 1,300 visits and 360,000 sequences performed the probe designing task in the last 30 months. It is freely accessible at <url>http://array.iis.sinica.edu.tw/ups/.</url></p> <p>Screen cast: <url>http://array.iis.sinica.edu.tw/ups/demo/demo.htm</url></p
Determination of Nucleopolyhedrovirus’ Taxonomic Position
To date
, over 78 genomes of nucleopolyhedroviruses (NPVs) have been sequenced and deposited in NCBI. How to define a new virus from the infected larvae in the field is usually the first question. Two NPV strains, which were isolated from casuarina moth (L. xylina) and golden birdwing larvae (Troides aeacus), respectively, displayed the same question. Due to the identity of polyhedrin (polh) sequences of these two isolates to that of Lymantria dispar MNPV and Bombyx mori NPV, they are named LdMNPV-like virus and TraeNPV, provisionally. To further clarify the relationships of LdMNPV-like virus and TraeNPV to closely related NPVs, Kimura 2-parameter (K-2-P) analysis was performed. Apparently, the results of K-2-P analysis that showed LdMNPV-like virus is an LdMNPV isolate, while TraeNPV had an ambiguous relationship to BmNPV. Otherwise, MaviNPV, which is a mini-AcMNPV, also exhibited a different story by K-2-P analysis. Since K-2-P analysis could not cover all species determination issues, therefore, TraeNPV needs to be sequenced for defining its taxonomic position. For this purpose, different genomic sequencing technologies and bioinformatic analysis approaches will be discussed. We anticipated that these applications will help to exam nucleotide information of unknown species and give an insight and facilitate to this issue
A novel randomly textured phosphor structure for highly efficient white light-emitting diodes
We have successfully demonstrated the enhanced luminous flux and lumen efficiency in white light-emitting diodes by the randomly textured phosphor structure. The textured phosphor structure was fabricated by a simple imprinting technique, which does not need an expensive dry-etching machine or a complex patterned definition. The textured phosphor structure increases luminous flux by 5.4% and 2.5% at a driving current of 120 mA, compared with the flat phosphor and half-spherical lens structures, respectively. The increment was due to the scattering of textured surface and also the phosphor particles, leading to the enhancement of utilization efficiency of blue light. Furthermore, the textured phosphor structure has a larger view angle at the full width at half maximum (87°) than the reference LEDs
Sialolipoma of the Floor of the Mouth: A Case Report
Intra-oral lipoma is a well-known entity, but lipomatous tumors including salivary gland tissue containing clustered or peripherally located ducts and acinar cells are uncommon. They are a newly recognized entity of salivary gland lipoma, designated sialolipoma. We describe a case of sialolipoma arising in the floor of the mouth presenting with apparently normal salivary gland tissue, as demonstrated by both histologic and immunohistochemical findings, in a 67-year-old female. Complete surgical removal of the tumor with preservation of the sublingual gland was implemented after a careful examination confirming that the lesion did not originate from the sublingual gland
- …