251 research outputs found

    Improved corrosion resistance of plasma carbon coated NiTi orthopedic materials

    Get PDF
    Nickel titanium (NiTi) alloys are useful in orthopedic applications because of their super-elastic properties and shape memory effects. However, when NiTi is used for a prolonged period of time, harmful Ni ions can leach out into the surrounding body fluid inside a human body, and so it is important to design a method to impede the out-diffusion of nickel from the materials into the biological medium. We aim at producing a barrier to mitigate the release of Ni ions during normal use. Carbon coatings have been shown to possess excellent bio-compatibility and good mechanical strength. In this work, amorphous hydrogenated DLC films with a graded C/NiTi interface were fabricated by plasma immersion ion implantation & deposition (PU & D) to provide such a barrier layer on NiTi. The elemental depth profiles and film thickness were determined by X-ray photoelectron spectroscopy (XPS) whereas the surface morphology was evaluated using atomic force microscopy (AFM). The film structure was studied by X-ray diffraction (XRD) and Raman spectroscopy. The corrosion resistance of the film was investigated using electrochemical tests based on ASTM G5-94. Compared to the control sample, the corrosion potential of the sample with the carbon coating changes from -250 to -50 mV and the film breakdown potential increases from 250 to 1200 mV. The corrosion current also diminishes from 10-6 to 10-7 A. The simulated body fluid (SBF) solutions after the electrochemical test were analyzed for Ni concentrations by inductively-coupled plasma mass spectrometry (ICPMS) and that data show that a much smaller amount of Ni has been released from the treated sample surface compared to the untreated control sample surface. Our results thus indicate that the deposited DLC film is effective in retarding the release of Ni ions from the bulk materials and more superior corrosion resistance is achieved based on our tests in a simulated fluid medium and at human body temperature.published_or_final_versio

    Learning Rays via Deep Neural Network in a Ray-based IPDG Method for High-Frequency Helmholtz Equations in Inhomogeneous Media

    Full text link
    We develop a deep learning approach to extract ray directions at discrete locations by analyzing highly oscillatory wave fields. A deep neural network is trained on a set of local plane-wave fields to predict ray directions at discrete locations. The resulting deep neural network is then applied to a reduced-frequency Helmholtz solution to extract the directions, which are further incorporated into a ray-based interior-penalty discontinuous Galerkin (IPDG) method to solve the Helmholtz equations at higher frequencies. In this way, we observe no apparent pollution effects in the resulting Helmholtz solutions in inhomogeneous media. Our 2D and 3D numerical results show that the proposed scheme is very efficient and yields highly accurate solutions.Comment: 30 page

    The lift industry in Hong Kong : regulatory action and capacity building

    Get PDF
    published_or_final_versionPolitics and Public AdministrationMasterMaster of Public Administratio

    Suppression of nickel out-diffusion from porous nickel-titanium shape memory alloy by plasma immersion ion implantation

    Get PDF
    Summary form only given. Porous nickel titanium is a promising material for medical application not only because of its super elasticity and shape memory effect but also the porous structure which may enhance bone growth due to the increased surface area. It is thus especially suitable for bone tissue in-growth and fixation of biomedical implants. However, like its dense counterpart, Ni leaching from the materials causes health concern. Thus, in order to suppress Ni diffusion from the materials to body fluids and tissues in humans, a diffusion barrier or similar structure must be introduced. In this work, we produced this diffusion barrier layer by oxygen or nitrogen plasma immersion ion implantation (PIII). In vitro tests were conducted by immersing the plasma-treated NiTi into simulated body fluid (SBF) at 37plusmn0.5degC for 5 weeks and the resulting SBF was analyzed for Ni and Ti using inductively-coupled plasma mass spectrometry (ICMPS). Our results show that Ni leaching is significantly mitigated by both nitrogen and oxygen PIII.published_or_final_versio

    Nickel suppression in Ni-Ti alloys by plasma immersion ion implantation surface treatment: New materials for orthopaedic implantation

    Get PDF
    Conference Theme: Spinal Motion Segment: From Basic Science to Clinical Applicationpublished_or_final_versio

    Suppression of nickel release in nickeltitanium alloys by plasma immersion ion implantation surface treatment: towards a new generation of "smart" orthopaedic implants

    Get PDF
    Summary form only given. Nickel-titanium shape memory alloys (NiTi) are potentially very useful in spinal deformity correction due to their super elastic properties and their ability to change shape with temperature. However, release of toxic nickel particulate debris remains a major concern. We have developed a novel method of altering the surface of the material to reduce nickel release by using plasma immersion ion implantation (PIII). This study compares the corrosion resistance and mechanical properties of PIII treated samples with untreated NiTi. NiTi discs containing 50.8% Ni were implanted with nitrogen using PIII technique. Their elemental depth profile, surface chemical composition, surface hardness and corrosion resistance were compared with untreated NiTi. The amount of Ni released into simulated body fluids after the accelerated corrosion tests were determined. The biocompatibility was assessed by culturing mouse osteoblasts expressing an enhanced green fluorescent protein on the surface of these materials. After PIII treatment, a layer of titanium nitride formed on the surface. Compared to untreated NiTi, the corrosion resistance is better by five times, and the surface hardness and elastic modulus are better by a factor of 2. The concentration of Ni in the simulated body fluid for the untreated sample was 30 ppm compared to undetectable levels in the PIII treated sample. There was no difference in the ability of cells to grow on either surface. PIII results in enhanced corrosion and wear resistance, and negligible Ni release. This technique will allow NiTi alloys to be safely implanted in the human body. A new generation of "smart" orthopaedic implants will likely result.published_or_final_versio

    Nickel ion level in scoliotic patients implanted with nitrogen plasma surface modified nickel-titanium superelastic spinal implant

    Get PDF
    published_or_final_versionThe 3rd International NanoElectronics Conference (INEC), Hong Kong, 3-8 January 2010. In Proceedings of the 3rd INEC, 2010, p. 136

    New plasma surface-treated memory alloys: Towards a new generation of "smart" orthopaedic materials

    Get PDF
    This paper describes the corrosion resistance, surface mechanical properties, cyto-compatibility, and in-vivo performance of plasma-treated and untreated NiTi samples. Nickel-titanium discs containing 50.8% Ni were treated by nitrogen and carbon plasma immersion ion implantation (PIII). After nitrogen plasma treatment, a layer of stable titanium nitride is formed on the NiTi surface. Titanium carbide is also found at the surface after carbon plasma implantation. Compared to the untreated samples, the corrosion resistances of the plasma PIII samples are better by a factor of five and the surface hardness and elastic modulus are better by a factor of two. The concentration of Ni leached into the simulated body fluids from the untreated samples is 30 ppm, whereas that from the plasma-treated PIII are undetectable. Although there is no significant difference in the ability of cells to grow on either surface, bone formation is found to be better on the nitrogen and carbon PIII sample surfaces at post-operation 2 weeks. All these improvements can be attributed to the formation of titanium nitride and titanium carbide on the surface. © 2007 Elsevier B.V. All rights reserved.postprin

    Wnt activation downregulates olfactomedin-1 in Fallopian tubal epithelial cells:a microenvironment predisposed to tubal ectopic pregnancy

    Get PDF
    Ectopic pregnancy (EP) occurs when the embryo fails to transit to the uterus and attach to the luminal epithelium of the Fallopian tube (FT). Tubal EP is a common gynecological emergency and more than 95% of EP occurs in the ampullary region of the FT. In humans, Wnt activation and downregulation of olfactomedin-1 (Olfm-1) occur in the receptive endometrium and coincided with embryo implantation in vivo. Whether similar molecular changes happen in the FT leading to EP remains unclear. We hypothesized that activation of Wnt signaling downregulates Olfm-1 expression predisposes to EP. We investigated the spatiotemporal expression of Olfm-1 in FT from non-pregnant women and women with EP, and used a novel trophoblastic spheroid (embryo surrogate)-FT epithelial cell co-culture model (JAr and OE-E6/E7 cells) to study the role of Olfm-1 on spheroid attachment. Olfm-1 mRNA expression in the ampullary region of non-pregnant FT was higher (P0.05) in the follicular phase than in the luteal phase. Ampullary tubal Olfm-1 expression was lower in FT from women with EP compared to normal controls at the luteal phase (histological scoring (H-SCORE)1.30.2 vs 2.40.5; P0.05). Treatment of OE-E6/E7 with recombinant Olfm-1 (0.2-5 g/ml) suppressed spheroid attachment to OE-E6/E7 cells, while activation of Wnt-signaling pathway by Wnt3a or LiCl reduced endogenous Olfm-1 expression and increased spheroid attachment. Conversely, suppression of Olfm-1 expression by RNAi increased spheroid attachment to OE-E6/E7 cells. Taken together, Wnt activation suppresses Olfm-1 expression, and this may predispose a favorable microenvironment of the retained embryo in the FT, leading to EP in humans. © 2012 USCAP, Inc All rights reserved.link_to_OA_fulltex

    A loop of cancer-stroma-cancer interaction promotes peritoneal metastasis of ovarian cancer via TNFα-TGFα-EGFR.

    Get PDF
    Peritoneum is the most common site for ovarian cancer metastasis. Here we investigate how cancer epigenetics regulates reciprocal tumor-stromal interactions in peritoneal metastasis of ovarian cancer. Firstly, we find that omental stromal fibroblasts enhance colony formation of metastatic ovarian cancer cells, and de novo expression of transforming growth factor-alpha (TGF-α) is induced in stromal fibroblasts co-cultured with ovarian cancer cells. We also observed an over-expression of tumor necrosis factor-alpha (TNF-α) in ovarian cancer cells, which is regulated by promoter DNA hypomethylation as well as chromatin remodeling. Interestingly, this ovarian cancer-derived TNF-α induces TGF-α transcription in stromal fibroblasts through nuclear factor-κB (NF-κB). We further show that TGF-α secreted by stromal fibroblasts in turn promotes peritoneal metastasis of ovarian cancer through epidermal growth factor receptor (EGFR) signaling. Finally, we identify a TNFα-TGFα-EGFR interacting loop between tumor and stromal compartments of human omental metastases. Our results therefore demonstrate cancer epigenetics induces a loop of cancer-stroma-cancer interaction in omental microenvironment that promotes peritoneal metastasis of ovarian cancer cells via TNFα-TGFα-EGFR
    • …
    corecore