40,629 research outputs found
Classification of -Wave and Systems
An exotic meson, the with , has been seen to
decay into a p-wave system. If this decay conserves flavor SU(3),
then it can be shown that this exotic meson must be a four-quark state () belonging to a flavor representation
of SU(3). In contrast, the with a substantial decay mode into
is likely to be a member of a flavor octet.Comment: 8 page
Non-equilibrium spatial distribution of Rashba spin torque in ferromagnetic metal layer
We study the spatial distribution of spin torque induced by a strong Rashba
spin-orbit coupling (RSOC) in a ferromagnetic (FM) metal layer, using the
Keldysh non-equilibrium Green's function method. In the presence of the s-d
interaction between the non-equilibrium conduction electrons and the local
magnetic moments, the RSOC effect induces a torque on the moments, which we
term as the Rashba spin torque.
A correlation between the Rashba spin torque and the spatial spin current is
presented in this work, clearly mapping the spatial distribution of Rashba Spin
torque in a nano-sized ferromagnetic device. When local magnetism is turned on,
the out-of-plane (Sz) Spin Hall effect (SHE) is disrupted, but rather
unexpectedly an in-plane (Sy) SHE is detected. We also study the effect of
Rashba strength (\alpha_R) and splitting exchange (\Delta) on the
non-equilibrium Rashba spin torque averaged over the device. Rashba spin torque
allows an efficient transfer of spin momentum such that a typical switching
field of 20 mT can be attained with a low current density of less than 10^6
A/cm^2
Improved determination of color-singlet nonrelativistic QCD matrix elements for S-wave charmonium
We present a new computation of S-wave color-singlet nonrelativistic QCD
matrix elements for the J/psi and the eta_c. We compute the matrix elements of
leading order in the heavy-quark velocity v and the matrix elements of relative
order v^2. Our computation is based on the electromagnetic decay rates of the
J/psi and the eta_c and on a potential model that employs the Cornell
potential. We include relativistic corrections to the electromagnetic decay
rates, resumming a class of corrections to all orders in v, and find that they
significantly increase the values of the matrix elements of leading order in v.
This increase could have important implications for theoretical predictions for
a number of quarkonium decay and production processes. The values that we find
for the matrix elements of relative order v^2 are somewhat smaller than the
values that one obtains from estimates that are based on the velocity-scaling
rules of nonrelativistic QCD.Comment: 31 pages, minor corrections, version published in Phys. Rev.
- …