49,624 research outputs found
Ising films with surface defects
The influence of surface defects on the critical properties of magnetic films
is studied for Ising models with nearest-neighbour ferromagnetic couplings. The
defects include one or two adjacent lines of additional atoms and a step on the
surface. For the calculations, both density-matrix renormalization group and
Monte Carlo techniques are used. By changing the local couplings at the defects
and the film thickness, non-universal features as well as interesting crossover
phenomena in the magnetic exponents are observed.Comment: 8 pages, 12 figures included, submitted to European Physical Journal
Scattering of Bunched Fractionally Charged Quasiparticles
The charge of fractionally charged quasiparticles, proposed by Laughlin to
explain the fractional quantum Hall effect (FQHE), was recently verified by
measurements. Charge q=e/3 and e/5 (e is the electron charge), at filling
factors nu=1/3 and 2/5, respectively, were measured. Here we report the
unexpected bunching of fractional charges, induced by an extremely weak
backscattering potential at exceptionally low electron temperatures (T<10 mK) -
deduced from shot noise measurements. Backscattered charges q=nu e,
specifically, q=e/3, q=2e/5, and q<3e/7, in the respective filling factors,
were measured. For the same settings but at an only slightly higher electron
temperature, the measured backscattered charges were q=e/3, q=e/5, and q=e/7.
In other words, bunching of backscattered quasiparticles is taking place at
sufficiently low temperatures. Moreover, the backscattered current exhibited
distinct temperature dependence that was correlated to the backscattered charge
and the filling factor. This observation suggests the existence of 'low' and
'high' temperature backscattering states, each with its characteristic charge
and characteristic energy.Comment: 4 pages, 3 figure
Controlling internal barrier in low loss BaTiO3 supercapacitors
Supercapacitor behavior has been reported in a number of oxides including reduced BaTiO3 ferroelectric ceramics. These so-called giant properties are however not easily controlled. We show here that the continuous coating of individual BaTiO3 grains by a silica shell in combination with spark plasma sintering is a way to process bulk composites having supercapacitor features with low dielectric losses and temperature stability. The silica shell acts both as an oxidation barrier during the processing and as a dielectric barrier in the final composite
Entanglement scaling in critical two-dimensional fermionic and bosonic systems
We relate the reduced density matrices of quadratic bosonic and fermionic
models to their Green's function matrices in a unified way and calculate the
scaling of bipartite entanglement of finite systems in an infinite universe
exactly. For critical fermionic 2D systems at T=0, two regimes of scaling are
identified: generically, we find a logarithmic correction to the area law with
a prefactor dependence on the chemical potential that confirms earlier
predictions based on the Widom conjecture. If, however, the Fermi surface of
the critical system is zero-dimensional, we find an area law with a
sublogarithmic correction. For a critical bosonic 2D array of coupled
oscillators at T=0, our results show that entanglement follows the area law
without corrections.Comment: 4 pages, 4 figure
Quantum pump driven fermionic Mach-Zehnder interferometer
We have investigated the characteristics of the currents in a pump-driven
fermionic Mach-Zehnder interferometer. The system is implemented in a conductor
in the quantum Hall regime, with the two interferometer arms enclosing an
Aharonov-Bohm flux . Two quantum point contacts with transparency
modulated periodically in time drive the current and act as beam-splitters. The
current has a flux dependent part as well as a flux independent
part . Both current parts show oscillations as a function of frequency
on the two scales determined by the lengths of the interferometer arms. In the
non-adiabatic, high frequency regime oscillates with a constant
amplitude while the amplitude of the oscillations of increases
linearly with frequency. The flux independent part is insensitive to
temperature while the flux dependent part is exponentially
suppressed with increasing temperature. We also find that for low amplitude,
adiabatic pumping rectification effects are absent for semitransparent
beam-splitters. Inelastic dephasing is introduced by coupling one of the
interferometer arms to a voltage probe. For a long charge relaxation time of
the voltage probe, giving a constant probe potential, and the part
of flowing in the arm connected to the probe are suppressed with
increased coupling to the probe. For a short relaxation time, with the
potential of the probe adjusting instantaneously to give zero time dependent
current at the probe, only is suppressed by the coupling to the
probe.Comment: 10 pages, 4 figure
- …