1,009 research outputs found
Comparative study of conversion of coral with ammonium dihydrogen phosphate and orthophosphoric acid to produce calcium phosphates
© 2014, Australasian Ceramic Society. All rights reserved. Biogenic materials like corals, which are readily available, could be used to produce bioceramic materials and address significant advantages due to their unique structures and chemical compositions that contain Mg and Sr. Many conversion processes has been in the past proposed. In this work, a comparison study between the conversion of coral with orthophosphoric acid and ammonium dihydrogen phosphate was conducted. The resultant structures and compositions were studied using XRD, ICP-MS, SEM and FTIR. The results show that with phosphoric acid the coral was converted into mainly monetite (92%). The ammonium dihydrogen phosphate converted approximately 76% of the coral to hydroxyapatite through solid state reactions. The two routes proved to be effective in producing bioceramic materials from corals under moderate conditions of temperature with a basic condition favouring the yield of hydroxyapatite
Detecting the orientation of magnetic fields in galaxy clusters
Clusters of galaxies, filled with hot magnetized plasma, are the largest
bound objects in existence and an important touchstone in understanding the
formation of structures in our Universe. In such clusters, thermal conduction
follows field lines, so magnetic fields strongly shape the cluster's thermal
history; that some have not since cooled and collapsed is a mystery. In a
seemingly unrelated puzzle, recent observations of Virgo cluster spiral
galaxies imply ridges of strong, coherent magnetic fields offset from their
centre. Here we demonstrate, using three-dimensional magnetohydrodynamical
simulations, that such ridges are easily explained by galaxies sweeping up
field lines as they orbit inside the cluster. This magnetic drape is then lit
up with cosmic rays from the galaxies' stars, generating coherent polarized
emission at the galaxies' leading edges. This immediately presents a technique
for probing local orientations and characteristic length scales of cluster
magnetic fields. The first application of this technique, mapping the field of
the Virgo cluster, gives a startling result: outside a central region, the
magnetic field is preferentially oriented radially as predicted by the
magnetothermal instability. Our results strongly suggest a mechanism for
maintaining some clusters in a 'non-cooling-core' state.Comment: 48 pages, 21 figures, revised version to match published article in
Nature Physics, high-resolution version available at
http://www.cita.utoronto.ca/~pfrommer/Publications/pfrommer-dursi.pd
The good, the bad and the twisted: a survey of ligand geometry in protein crystal structures
The protein databank now contains the structures of over 11,000 ligands bound to proteins. These structures are invaluable in applied areas such as structure-based drug design, but are also the substrate for understanding the energetics of intermolecular interactions with proteins. Despite their obvious importance, the careful analysis of ligands bound to protein structures lags behind the analysis of the protein structures themselves. We present an analysis of the geometry of ligands bound to proteins and highlight the role of small molecule crystal structures in enabling molecular modellers to critically evaluate a ligand model’s quality and investigate protein-induced strain
Gene expression profiling in the lung tissue of cynomolgus monkeys in response to repeated exposure to welding fumes
Many in the welding industry suffer from bronchitis, lung function changes, metal fume fever, and diseases related to respiratory damage. These phenomena are associated with welding fumes; however, the mechanism behind these findings remains to be elucidated. In this study, the lungs of cynomolgus monkeys were exposed to MMA-SS welding fumes for 229 days and allowed to recover for 153 days. After the exposure and recovery period, gene expression profiles were investigated using the Affymetrix GeneChip® Human U133 plus 2.0. In total, it was confirmed that 1,116 genes were up-or down-regulated (over 2-fold changes, P < 0.01) for the T1 (31.4 ± 2.8 mg/m3) and T2 (62.5 ± 2.7 mg/m3) dose groups. Differentially expressed genes in the exposure and recovery groups were analyzed, based on hierarchical clustering, and were imported into Ingenuity Pathways Analysis to analyze the biological and toxicological functions. Functional analysis identified genes involved in immunological disease in both groups. Additionally, differentially expressed genes in common between monkeys and rats following welding fume exposure were compared using microarray data, and the gene expression of selected genes was verified by real-time PCR. Genes such as CHI3L1, RARRES1, and CTSB were up-regulated and genes such as CYP26B1, ID4, and NRGN were down-regulated in both monkeys and rats following welding fume exposure. This is the first comprehensive gene expression profiling conducted for welding fume exposure in monkeys, and these expressed genes are expected to be useful in helping to understand transcriptional changes in monkey lungs after welding fume exposure
The Taiwan Birth Panel Study: a prospective cohort study for environmentally- related child health
<p>Abstract</p> <p>Background</p> <p>The Taiwan Birth Panel Study (TBPS) is a prospective follow-up study to investigate the development of child health and disease in relation to in-utero and/or early childhood environmental exposures. The rationale behind the establishment of such a cohort includes the magnitude of potential environmental exposures, the timing of exposure window, fatal and children's susceptibility to toxicants, early exposure delayed effects, and low-level or unknown neurodevelopmental toxicants.</p> <p>Methods</p> <p>A total of 486 mother-infant paired was enrolled from April 2004 to January 2005 in this study. Maternal blood before delivery, placenta and umbilical cord blood at birth, and mothers' urine after delivery were collected. The follow-up was scheduled at birth, 4, 6 months, and 1, 2, 3 and 5 years. The children's blood, urine, hair, and saliva were collected at 2 years of age and children's urine was collected at 5 years of age as well. The study has been approved by the ethical committee of National Taiwan University Hospital. All the subjects signed the inform consent on entering the study and each of the follow up.</p> <p>Results</p> <p>Through this prospective birth cohort, the main health outcomes were focused on child growth, neurodevelopment, behaviour problem and atopic diseases. We investigated the main prenatal and postnatal factors including smoking, heavy metals, perfluorinated chemicals, and non-persistent pesticides under the consideration of interaction of the environment and genes.</p> <p>Conclusions</p> <p>This cohort study bridges knowledge gaps and answers unsolved issues in the low-level, prenatal or postnatal, and multiple exposures, genetic effect modification, and the initiation and progression of "environmentally-related childhood diseases."</p
Recommended from our members
Beam Energy and Centrality Dependence of Direct-Photon Emission from Ultrarelativistic Heavy-Ion Collisions.
The PHENIX collaboration presents first measurements of low-momentum (0.41 GeV/c) direct-photon yield dN_{γ}^{dir}/dη is a smooth function of dN_{ch}/dη and can be well described as proportional to (dN_{ch}/dη)^{α} with α≈1.25. This scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and the Large Hadron Collider, for centrality selected samples, as well as for different A+A collision systems. At a given beam energy, the scaling also holds for high p_{T} (>5 GeV/c), but when results from different collision energies are compared, an additional sqrt[s_{NN}]-dependent multiplicative factor is needed to describe the integrated-direct-photon yield
Efficacy, Tolerability, and Biomarker Analyses of Once-Every-2-Weeks Cetuximab Plus First-Line FOLFOX or FOLFIRI in Patients With KRAS or All RAS Wild-Type Metastatic Colorectal Cancer: The Phase 2 APEC Study
published_or_final_versio
Zona Pellucida Domain-Containing Protein β-Tectorin is Crucial for Zebrafish Proper Inner Ear Development
BACKGROUND: The zona pellucida (ZP) domain is part of many extracellular proteins with diverse functions from structural components to receptors. The mammalian β-tectorin is a protein of 336 amino acid residues containing a single ZP domain and a putative signal peptide at the N-terminus of the protein. It is 1 component of a gel-like structure called the tectorial membrane which is involved in transforming sound waves into neuronal signals and is important for normal auditory function. β-Tectorin is specifically expressed in the mammalian and avian inner ear. METHODOLOGY/PRINCIPAL FINDINGS: We identified and cloned the gene encoding zebrafish β-tectorin. Through whole-mount in situ hybridization, we demonstrated that β-tectorin messenger RNA was expressed in the otic placode and specialized sensory patch of the inner ear during zebrafish embryonic stages. Morpholino knockdown of zebrafish β-tectorin affected the position and number of otoliths in the ears of morphants. Finally, swimming behaviors of β-tectorin morphants were abnormal since the development of the inner ear was compromised. CONCLUSIONS/SIGNIFICANCE: Our results reveal that zebrafish β-tectorin is specifically expressed in the zebrafish inner ear, and is important for regulating the development of the zebrafish inner ear. Lack of zebrafish β-tectorin caused severe defects in inner ear formation of otoliths and function
- …