49,022 research outputs found
Extraction of nuclear matter properties from nuclear masses by a model of equation of state
The extraction of nuclear matter properties from measured nuclear masses is
investigated in the energy density functional formalism of nuclei. It is shown
that the volume energy and the nuclear incompressibility depend
essentially on , whereas the symmetry energy
and the density symmetry coefficient as well as symmetry incompressibility
depend essentially on , where
, and are the
neutron and proton chemical potentials respectively, the nuclear energy,
and the Coulomb energy. The obtained symmetry energy is ,
while other coefficients are uncertain within ranges depending on the model of
nuclear equation of state.Comment: 12 pages and 7 figure
Effective nucleon-nucleon interactions and nuclear matter equation of state
Nuclear matter equations of state based on Skyrme, Myers-Swiatecki and
Tondeur interactions are written as polynomials of the cubic root of density,
with coefficients that are functions of the relative neutron excess .
In the extrapolation toward states far away from the standard one, it is shown
that the asymmetry dependence of the critical point ()
depends on the model used. However, when the equations of state are fitted to
the same standard state, the value of is almost the same in Skyrme
and in Myers-Swiatecki interactions, while is much lower in Tondeur
interaction. Furthermore, does not depend sensitively on the choice
of the parameter in Skyrme interaction.Comment: 15 pages, 9 figure
Nuclear matter properties and relativistic mean-field theory
Nuclear matter properties are calculated in the relativistic mean field
theory by using a number of different parameter sets. The result shows that the
volume energy and the symmetry energy are around the acceptable
values 16MeV and 30MeV respectively; the incompressibility is
unacceptably high in the linear model, but assumes reasonable value if
nonlinear terms are included; the density symmetry is around for
most parameter sets, and the symmetry incompressibility has positive sign
which is opposite to expectations based on the nonrelativistic model. In almost
all parameter sets there exists a critical point , where
the minimum and the maximum of the equation of state are coincident and the
incompressibility equals zero, falling into ranges
0.014fmfm and ; for a few
parameter sets there is no critical point and the pure neutron matter is
predicted to be bound. The maximum mass of neutron stars is predicted
in the range 2.45MM, the corresponding
neutron star radius is in the range 12.2kmkm.Comment: 10 pages, 5 figure
On the chain length dependence of local correlations in polymer melts and a perturbation theory of symmetric polymer blends
The self-consistent field (SCF) theory of dense polymer liquids assumes that
short-range correlations are almost independent of how monomers are connected
into polymers. Some limits of this idea are explored in the context of a
perturbation theory for mixtures of structurally identical polymer species, A
and B, in which the AB pair interaction differs slightly from the AA and BB
interaction, and the difference is controlled by a parameter alpha Expanding
the free energy to O(\alpha) yields an excess free energy of the form alpha
, in both lattice and continuum models, where z(N) is a
measure of the number of inter-molecular near neighbors of each monomer in a
one-component liquid. This quantity decreases slightly with increasing N
because the self-concentration of monomers from the same chain is slightly
higher for longer chains, creating a deeper correlation hole for longer chains.
We analyze the resulting -dependence, and predict that , where is an invariant degree of
polymerization, and . This and other predictions are
confirmed by comparison to simulations. We also propose a way to estimate the
effective interaction parameter appropriate for comparisons of simulation data
to SCF theory and to coarse-grained theories of corrections to SCF theory,
which is based on an extrapolation of coefficients in this perturbation theory
to the limit . We show that a renormalized one-loop theory
contains a quantitatively correct description of the -dependence of local
structure studied here.Comment: submitted to J. Chem. Phy
- …