13,974 research outputs found

    SU(3) SU(3) Classification of p p -Wave ηπ \eta\pi and η′π \eta'\pi Systems

    Full text link
    An exotic meson, the π1(1400)\pi_1(1400) with JPC=1−+J^{PC}=1^{-+}, has been seen to decay into a p-wave ηπ\eta\pi system. If this decay conserves flavor SU(3), then it can be shown that this exotic meson must be a four-quark state (qqˉ+qqˉq\bar q+q\bar q) belonging to a flavor 10⊕10ˉ{\bf10}\oplus{\bf\bar{10}} representation of SU(3). In contrast, the π1(1600)\pi_1(1600) with a substantial decay mode into η′π\eta'\pi is likely to be a member of a flavor octet.Comment: 8 page

    Entanglement scaling in critical two-dimensional fermionic and bosonic systems

    Full text link
    We relate the reduced density matrices of quadratic bosonic and fermionic models to their Green's function matrices in a unified way and calculate the scaling of bipartite entanglement of finite systems in an infinite universe exactly. For critical fermionic 2D systems at T=0, two regimes of scaling are identified: generically, we find a logarithmic correction to the area law with a prefactor dependence on the chemical potential that confirms earlier predictions based on the Widom conjecture. If, however, the Fermi surface of the critical system is zero-dimensional, we find an area law with a sublogarithmic correction. For a critical bosonic 2D array of coupled oscillators at T=0, our results show that entanglement follows the area law without corrections.Comment: 4 pages, 4 figure

    Equivalence of the Falicov-Kimball and Brandt-Mielsch forms for the free energy of the infinite-dimensional Falicov-Kimball model

    Full text link
    Falicov and Kimball proposed a real-axis form for the free energy of the Falicov-Kimball model that was modified for the coherent potential approximation by Plischke. Brandt and Mielsch proposed an imaginary-axis form for the free energy of the dynamical mean field theory solution of the Falicov-Kimball model. It has long been known that these two formulae are numerically equal to each other; an explicit derivation showing this equivalence is presented here.Comment: 4 pages, 1 figure, typeset with ReVTe

    Linking hopping conductivity to giant dielectric permittivity in oxides

    Get PDF
    With the promise of electronics breakthrough, giant dielectric permittivity materials are under deep investigations. In most of the oxides where such behavior was observed, charged defects at interfaces are quoted for such giant behavior to occur but the underlying conduction and localization mechanisms are not well known. Comparing macroscopic dielectric relaxation to microscopic dynamics of charged defects resulting from electron paramagnetic resonance investigations we identify the actual charged defects in the case of BaTiO3 ceramics and composites. This link between the thermal activation at these two complementary scales may be extended to the numerous oxides were giant dielectric behavior was found

    Controlling internal barrier in low loss BaTiO3 supercapacitors

    Get PDF
    Supercapacitor behavior has been reported in a number of oxides including reduced BaTiO3 ferroelectric ceramics. These so-called giant properties are however not easily controlled. We show here that the continuous coating of individual BaTiO3 grains by a silica shell in combination with spark plasma sintering is a way to process bulk composites having supercapacitor features with low dielectric losses and temperature stability. The silica shell acts both as an oxidation barrier during the processing and as a dielectric barrier in the final composite

    Non-monotonic temperature dependent transport in graphene grown by Chemical Vapor Deposition

    Full text link
    Temperature-dependent resistivity of graphene grown by chemical vapor deposition (CVD) is investigated. We observe in low mobility CVD graphene device a strong insulating behavior at low temperatures and a metallic behavior at high temperatures manifesting a non-monotonic in the temperature dependent resistivity.This feature is strongly affected by carrier density modulation. To understand this anomalous temperature dependence, we introduce thermal activation of charge carriers in electron-hole puddles induced by randomly distributed charged impurities. Observed temperature evolution of resistivity is then understood from the competition among thermal activation of charge carriers, temperature-dependent screening and phonon scattering effects. Our results imply that the transport property of transferred CVD-grown graphene is strongly influenced by the details of the environmentComment: 7 pages, 3 figure
    • …
    corecore