45,074 research outputs found
Extraction of nuclear matter properties from nuclear masses by a model of equation of state
The extraction of nuclear matter properties from measured nuclear masses is
investigated in the energy density functional formalism of nuclei. It is shown
that the volume energy and the nuclear incompressibility depend
essentially on , whereas the symmetry energy
and the density symmetry coefficient as well as symmetry incompressibility
depend essentially on , where
, and are the
neutron and proton chemical potentials respectively, the nuclear energy,
and the Coulomb energy. The obtained symmetry energy is ,
while other coefficients are uncertain within ranges depending on the model of
nuclear equation of state.Comment: 12 pages and 7 figure
Zero-shot keyword spotting for visual speech recognition in-the-wild
Visual keyword spotting (KWS) is the problem of estimating whether a text
query occurs in a given recording using only video information. This paper
focuses on visual KWS for words unseen during training, a real-world, practical
setting which so far has received no attention by the community. To this end,
we devise an end-to-end architecture comprising (a) a state-of-the-art visual
feature extractor based on spatiotemporal Residual Networks, (b) a
grapheme-to-phoneme model based on sequence-to-sequence neural networks, and
(c) a stack of recurrent neural networks which learn how to correlate visual
features with the keyword representation. Different to prior works on KWS,
which try to learn word representations merely from sequences of graphemes
(i.e. letters), we propose the use of a grapheme-to-phoneme encoder-decoder
model which learns how to map words to their pronunciation. We demonstrate that
our system obtains very promising visual-only KWS results on the challenging
LRS2 database, for keywords unseen during training. We also show that our
system outperforms a baseline which addresses KWS via automatic speech
recognition (ASR), while it drastically improves over other recently proposed
ASR-free KWS methods.Comment: Accepted at ECCV-201
Specific volumes of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy in the liquid, glass, and crystalline states
The specific volumes of the Zr41.2Ti13.8CU12.5Ni10.0Be2.25 alloy as a function of temperature, T, are determined by employing an image digitizing technique and numerical calculation methods applied to the electrostatically levitated spherical alloy. The linear fitting of the volumes of the alloy in the liquid, V-l, glass, V-g, and crystalline V-c, states in the temperature ranges shown in parentheses are V-l(T) = 0.1583 + 8.877 x 10(-6)T(cm^(3)/g) (700-1300 K); V-g(T) = 0.1603 + 5.528 x 10^(-6)T (400-550 K); V-c(T) = 0.1583 + 6.211 x 10(-6)T(400-850 K). The average volume thermal expansion coefficients within the temperature ranges are determined to be 5.32, 3.39, and 3.83 x 10^(-5) (1/K) for the liquid, glass, and crystalline states, respectively
Induced Lorentz- and CPT-violating Chern-Simons term in QED: Fock-Schwinger proper time method
Using the Fock-Schwinger proper time method, we calculate the induced
Chern-Simons term arising from the Lorentz- and CPT-violating sector of quantum
electrodynamics with a term. Our
result to all orders in coincides with a recent linear-in- calculation
by Chaichian et al. [hep-th/0010129 v2]. The coincidence was pointed out by
Chung [Phys. Lett. {\bf B461} (1999) 138] and P\'{e}rez-Victoria [Phys. Rev.
Lett. {\bf 83} (1999) 2518] in the standard Feynman diagram calculation with
the nonperturbative-in- propagator.Comment: 11 pages, no figur
Erratum: Dynamics and scaling in a quantum spin chain material with bond randomness
Follow-up neutron measurements, performed on a sample much larger than the
one used in the original study, show that in the energy range 0.5-45 meV the
magnetic excitations in BaCu2SiGeO7 are indistinguishable from those in
conventional (disorder-free) quantum S=1/2 chains. Scrutinizing the previous
data, we found that the analysis was affected by a poorly identified structured
background and an additional technical mistake in the data reduction.Comment: This is a complete withdrawal of the original paper, also published
as in Phys. Rev. Lett 93, 077206 (2004). One page, one figur
Effective nucleon-nucleon interactions and nuclear matter equation of state
Nuclear matter equations of state based on Skyrme, Myers-Swiatecki and
Tondeur interactions are written as polynomials of the cubic root of density,
with coefficients that are functions of the relative neutron excess .
In the extrapolation toward states far away from the standard one, it is shown
that the asymmetry dependence of the critical point ()
depends on the model used. However, when the equations of state are fitted to
the same standard state, the value of is almost the same in Skyrme
and in Myers-Swiatecki interactions, while is much lower in Tondeur
interaction. Furthermore, does not depend sensitively on the choice
of the parameter in Skyrme interaction.Comment: 15 pages, 9 figure
Adjacency labeling schemes and induced-universal graphs
We describe a way of assigning labels to the vertices of any undirected graph
on up to vertices, each composed of bits, such that given the
labels of two vertices, and no other information regarding the graph, it is
possible to decide whether or not the vertices are adjacent in the graph. This
is optimal, up to an additive constant, and constitutes the first improvement
in almost 50 years of an bound of Moon. As a consequence, we
obtain an induced-universal graph for -vertex graphs containing only
vertices, which is optimal up to a multiplicative constant,
solving an open problem of Vizing from 1968. We obtain similar tight results
for directed graphs, tournaments and bipartite graphs
Nuclear matter properties and relativistic mean-field theory
Nuclear matter properties are calculated in the relativistic mean field
theory by using a number of different parameter sets. The result shows that the
volume energy and the symmetry energy are around the acceptable
values 16MeV and 30MeV respectively; the incompressibility is
unacceptably high in the linear model, but assumes reasonable value if
nonlinear terms are included; the density symmetry is around for
most parameter sets, and the symmetry incompressibility has positive sign
which is opposite to expectations based on the nonrelativistic model. In almost
all parameter sets there exists a critical point , where
the minimum and the maximum of the equation of state are coincident and the
incompressibility equals zero, falling into ranges
0.014fmfm and ; for a few
parameter sets there is no critical point and the pure neutron matter is
predicted to be bound. The maximum mass of neutron stars is predicted
in the range 2.45MM, the corresponding
neutron star radius is in the range 12.2kmkm.Comment: 10 pages, 5 figure
- …