2,504 research outputs found

    Pattern Formation in a Two-Dimensional Array of Oscillators with Phase-Shifted Coupling

    Full text link
    We investigate the dynamics of a two-dimensional array of oscillators with phase-shifted coupling. Each oscillator is allowed to interact with its neighbors within a finite radius. The system exhibits various patterns including squarelike pinwheels, (anti)spirals with phase-randomized cores, and antiferro patterns embedded in (anti)spirals. We consider the symmetry properties of the system to explain the observed behaviors, and estimate the wavelengths of the patterns by linear analysis. Finally, we point out the implications of our work for biological neural networks

    Time-delayed Spatial Patterns in a Two-dimensional Array of Coupled Oscillators

    Full text link
    We investigated the effect of time delays on phase configurations in a set of two-dimensional coupled phase oscillators. Each oscillator is allowed to interact with its neighbors located within a finite radius, which serves as a control parameter in this study. It is found that distance-dependent time-delays induce various patterns including traveling rolls, square-like and rhombus-like patterns, spirals, and targets. We analyzed the stability boundaries of the emerging patterns and briefly pointed out the possible empirical implications of such time-delayed patterns.Comment: 5 Figure

    Localized electronic states induced by defects and possible origin of ferroelectricity in strontium titanate thin films

    Full text link
    Several defect configurations including oxygen vacancies have been investigated as possible origins of the reported room-temperature ferroelectricity of strontium titanate (STO) thin films [Appl. Phys. Letts. 91, 042908 (2007)]. First-principles calculations revealed that the Sr-O-O vacancy complexes create deep localized states in the band gap of SrTiO3 without affecting its insulating property. These results are in agreement with electronic structural changes determined from optical transmission and X-ray absorption measurements. This work opens the way to exploiting oxygen vacancies and their complexes as a source of ferroelectricity in perovskite oxide thin films, including STO

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    Get PDF
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 ?? 6 ?? 6 m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019???2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties
    corecore