28 research outputs found

    Sensitization of Human Cancer Cells to Gemcitabine by the Chk1 Inhibitor MK-8776: Cell Cycle Perturbation and Impact of Administration Schedule in Vitro and in Vivo

    Get PDF
    Chk1 inhibitors have emerged as promising anticancer therapeutic agents particularly when combined with antimetabolites such as gemcitabine, cytarabine or hydroxyurea. Here, we address the importance of appropriate drug scheduling when gemcitabine is combined with the Chk1 inhibitor MK-8776, and the mechanisms involved in the schedule dependence

    Preserved respiratory chain capacity and physiology in mice with profoundly reduced levels of mitochondrial respirasomes

    Get PDF
    The mammalian respiratory chain complexes I, III 2, and IV (CI, CIII 2, and CIV) are critical for cellular bioenergetics and form a stable assembly, the respirasome (CI-CIII 2-CIV), that is biochemically and structurally well documented. The role of the respirasome in bioenergetics and the regulation of metabolism is subject to intense debate and is difficult to study because the individual respiratory chain complexes coexist together with high levels of respirasomes. To critically investigate the in vivo role of the respirasome, we generated homozygous knockin mice that have normal levels of respiratory chain complexes but profoundly decreased levels of respirasomes. Surprisingly, the mutant mice are healthy, with preserved respiratory chain capacity and normal exercise performance. Our findings show that high levels of respirasomes are dispensable for maintaining bioenergetics and physiology in mice but raise questions about their alternate functions, such as those relating to the regulation of protein stability and prevention of age-associated protein aggregation

    Identification of a novel toxicophore in anti-cancer chemotherapeutics that targets mitochondrial respiratory complex I

    Get PDF
    Disruption of mitochondrial function selectively targets tumour cells that are dependent on oxidative phosphorylation. However, due to their high energy demands, cardiac cells are disproportionately targeted by mitochondrial toxins resulting in a loss of cardiac function. An analysis of the effects of mubritinib on cardiac cells showed that this drug did not inhibit HER2 as reported, but directly inhibits mitochondrial respiratory complex I, reducing cardiac-cell beat rate, with prolonged exposure resulting in cell death. We used a library of chemical variants of mubritinib and showed that modifying the 1H-1,2,3-triazole altered complex I inhibition, identifying the heterocyclic 1,3-nitrogen motif as the toxicophore. The same toxicophore is present in a second anti-cancer therapeutic carboxyamidotriazole (CAI) and we demonstrate that CAI also functions through complex I inhibition, mediated by the toxicophore. Complex I inhibition is directly linked to anti-cancer cell activity, with toxicophore modification ablating the desired effects of these compounds on cancer cell proliferation and apoptosis

    Sensitization of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: cell cycle perturbation and impact of administration schedule in vitro and in vivo

    No full text
    Background: Chk1 inhibitors have emerged as promising anticancer therapeutic agents particularly when combined with antimetabolites such as gemcitabine, cytarabine or hydroxyurea. Here, we address the importance of appropriate drug scheduling when gemcitabine is combined with the Chk1 inhibitor MK-8776, and the mechanisms involved in the schedule dependence. Methods: Growth inhibition induced by gemcitabine plus MK-8776 was assessed across multiple cancer cell lines. Experiments used clinically relevant bolus administration of both drugs rather than continuous drug exposures. We assessed the effect of different treatment schedules on cell cycle perturbation and tumor cell growth in vitro and in xenograft tumor models. Results: MK-8776 induced an average 7-fold sensitization to gemcitabine in 16 cancer cell lines. The time of MK-8776 administration significantly affected the response of tumor cells to gemcitabine. Although gemcitabine induced rapid cell cycle arrest, the stalled replication forks were not initially dependent on Chk1 for stability. By 18 h, RAD51 was loaded onto DNA indicative of homologous recombination. Inhibition of Chk1 at 18 h rapidly dissociated RAD51 leading to the collapse of replication forks and cell death. Addition of MK-8776 from 18-24 h after a 6-h incubation with gemcitabine induced much greater sensitization than if the two drugs were incubated concurrently for 6 h. The ability of this short incubation with MK-8776 to sensitize cells is critical because of the short half-life of MK-8776 in patients\u27 plasma. Cell cycle perturbation was also assessed in human pancreas tumor xenografts in mice. There was a dramatic accumulation of cells in S/G(2) phase 18 h after gemcitabine administration, but cells had started to recover by 42 h. Administration of MK-8776 18 h after gemcitabine caused significantly delayed tumor growth compared to either drug alone, or when the two drugs were administered with only a 30 min interval. Conclusions: There are two reasons why delayed addition of MK-8776 enhances sensitivity to gemcitabine: first, there is an increased number of cells arrested in S phase; and second, the arrested cells have adequate time to initiate recombination and thereby become Chk1 dependent. These results have important implications for the design of clinical trials using this drug combination

    Adenoviral Vectors and Hematopoietic Cells

    No full text
    corecore