199 research outputs found

    Dynamics of quantum-classical hybrid system: effect of matter-wave pressure

    Full text link
    Radiation pressure affects the kinetics of a system exposed to the radiation and it constitutes the basis of laser cooling. In this paper, we study {\it matter-wave pressure} through examining the dynamics of a quantum-classical hybrid system. The quantum and classical subsystem have no explicit coupling to each other, but affect mutually via a changing boundary condition. Two systems, i.e., an atom and a Bose-Einstein condensate(BEC), are considered as the quantum subsystems, while an oscillating wall is taken as the classical subsystem. We show that the classical subsystem would experience a force proportional to Q3Q^{-3} from the quantum atom, whereas it acquires an additional force proportional to Q2Q^{-2} from the BEC due to the atom-atom interaction in the BEC. These forces can be understood as the {\it matter-wave pressure}.Comment: 7 pages, 6 figue

    Sintering and Properties of Nb4AlC3 Ceramic

    Get PDF

    Simple and Efficient Partial Graph Adversarial Attack: A New Perspective

    Full text link
    As the study of graph neural networks becomes more intensive and comprehensive, their robustness and security have received great research interest. The existing global attack methods treat all nodes in the graph as their attack targets. Although existing methods have achieved excellent results, there is still considerable space for improvement. The key problem is that the current approaches rigidly follow the definition of global attacks. They ignore an important issue, i.e., different nodes have different robustness and are not equally resilient to attacks. From a global attacker's view, we should arrange the attack budget wisely, rather than wasting them on highly robust nodes. To this end, we propose a totally new method named partial graph attack (PGA), which selects the vulnerable nodes as attack targets. First, to select the vulnerable items, we propose a hierarchical target selection policy, which allows attackers to only focus on easy-to-attack nodes. Then, we propose a cost-effective anchor-picking policy to pick the most promising anchors for adding or removing edges, and a more aggressive iterative greedy-based attack method to perform more efficient attacks. Extensive experimental results demonstrate that PGA can achieve significant improvements in both attack effect and attack efficiency compared to other existing graph global attack methods

    DIFER: Differentiable Automated Feature Engineering

    Full text link
    Feature engineering, a crucial step of machine learning, aims to extract useful features from raw data to improve data quality. In recent years, great efforts have been devoted to Automated Feature Engineering (AutoFE) to replace expensive human labor. However, existing methods are computationally demanding due to treating AutoFE as a coarse-grained black-box optimization problem over a discrete space. In this work, we propose an efficient gradient-based method called DIFER to perform differentiable automated feature engineering in a continuous vector space. DIFER selects potential features based on evolutionary algorithm and leverages an encoder-predictor-decoder controller to optimize existing features. We map features into the continuous vector space via the encoder, optimize the embedding along the gradient direction induced by the predicted score, and recover better features from the optimized embedding by the decoder. Extensive experiments on classification and regression datasets demonstrate that DIFER can significantly improve the performance of various machine learning algorithms and outperform current state-of-the-art AutoFE methods in terms of both efficiency and performance.Comment: 8 pages, 5 figure
    corecore