177 research outputs found

    Visible-light-driven Ag/Bi3O4Cl nanocomposite photocatalyst with enhanced photocatalytic activity for degradation of tetracycline

    Get PDF
    In this study, a novel Ag/Bi3O4Cl photocatalyst has been synthesized by a facile photodeposition process. Its photocatalytic performance was evaluated from the degradation of tetracycline (TC) under visible light irradiation (λ > 420 nm). The 1.0 wt% Ag/Bi3O4Cl photocatalyst could significantly enhance the degradation of TC compared with pure Bi3O4Cl, with the degradation level reaching 94.2% in 120 minutes. The enhancement of photocatalytic activity could be attributed to the synergetic effect of the photogenerated electrons (e−) of Bi3O4Cl and the surface plasmon resonance (SPR) caused by Ag nanoparticles, which could improve the absorption capacity of visible light and facilitate the separation of photogenerated electron–hole pairs. In addition, electron spin resonance (ESR) analysis and trapping experiments demonstrated that the superoxide radicals (˙O2−), hydroxyl radicals (˙OH) and holes (h+) played crucial roles in the photocatalytic process of TC degradation. The present work provides a promising approach for the development of highly efficient photocatalysts to address current environmental pollution, energy issues and other related areas

    The Moderating Role of COMT and BDNF Polymorphisms on Transfer Effects Following Multi- and Single-Domain Cognitive Training Among Community-Dwelling Shanghainese Older Adults

    Get PDF
    Given the increase in research suggesting benefit following cognitive training in older adults, researchers have started to investigate the potential moderating role of genetic polymorphisms on transfer effects. The objective of this study was to evaluate the moderating effect of catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) polymorphisms on transfer effects following a single-domain or multi-domain training intervention in healthy community-dwelling older adults. A total of 104 men and women living in Shanghai were randomized to a multi-domain or a single-domain cognitive training (SDCT) group. COMT rs4818 SNP and the BDNF rs6265 SNP were analyzed from blood. At pre-intervention, post-intervention and at 6-month follow-up, participants completed the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), the Color-Word Stroop Test (CWST), the Trails Making Test (TMT) and the Visual Reasoning Test (VRT). COMT was found to moderate immediate memory transfer effects following single-domain training only, with G/- carriers displaying greater benefits than C/C carriers. BDNF was found to moderate attention and inhibition independent of the training, with Met/- carriers displaying better performance than Val/Val carriers. Overall, individualizing training methods with full consideration of genetic polymorphisms may promote the maximization of cognitive training benefits

    A Review of Dynamic Wireless Power Transfer for In‐Motion Electric Vehicles

    Get PDF
    Dynamic wireless power transfer system (DWPT) in urban area ensures an uninterrupted power supply for electric vehicles (EVs), extending or even providing an infinite driving range with significantly reduced battery capacity. The underground power supply network also saves more space and hence is important in urban areas. It must be noted that the railways have become an indispensable form of public transportation to reduce pollution and traffic congestion. In recent years, there has been a consistent increase in the number of high‐speed railways in major cities of China, thereby improving accessibility. Wireless power transfer for train is safer and more robust when compared with conductive power transfer through pantograph mounted on the trains. Direct contact is subject to wear and tear; in particular, the average speed of modern trains has been increasing. When the pressure of pantograph is not sufficient, arcs, variations of the current, and even interruption in power supply may occur. This chapter provides a review of the latest research and development of dynamic wireless power transfer for urban EV and electric train (ET). The following key technology issues have been discussed: (1) power rails and pickups, (2) segmentations and power supply schemes, (3) circuit topologies and dynamic impedance matching, (4) control strategies, and (5) electromagnetic interference

    Altered auditory processes pattern predicts cognitive decline in older adults: different modalities with aging

    Get PDF
    BackgroundCohort studies have shown that older adults with hearing impairment as assessed by self-report or behavioral measures are at higher risk of developing dementia many years later. A fine-grained examination of auditory processing holds promise for more effective screening of older adults at risk of cognitive decline. The auditory mismatch negativity (MMN) measure enables one to gain insights into the neurobiological substrate of central auditory processing. We hypothesized that older adults showing compromised indexes of MMN at baseline would exhibit cognitive decline at the one-year follow-up.MethodsWe performed cognitive evaluations with the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS; Form A and Form B) in 108 community-dwelling older adults and acquired EEG via the classic passive auditory oddball paradigm at baseline and 12-month follow-up.ResultsThe results showed that young-old adults with future cognitive decline showed a decrease in MMN peak amplitude, accompanied by a forward-shifting latency, whereas in older adults it showed a delay in MMN latency, and unchanged MMN peak amplitude at midline electrodes (Fz, FCz and Cz). Furthermore, the peak amplitude of the MMN decreases with age in older adults aged 70–80 years rather than 60–70 years or > 80 years.ConclusionThe altered MMN model exists in different aging stages and it’s a promising electrophysiological predictor of cognitive decline in older adults. In addition, further research is needed to determine the neural mechanisms and potential implications of the accelerated decline in MMN in older adults

    Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models

    Get PDF
    The Middle Permian Emeishan large igneous province of SW China has provided the quintessential example of the phenomenon of kilometre-scale pre-eruption domal uplift associated with mantle plume impingement on the base of the lithosphere. One key line of evidence is an interpreted zone of truncation of the platform carbonates belonging to the Maokou Formation that underlies the volcanic pile. Here we test this interpretation by conodont age dating the uppermost beds of the Maokou Formation in sections from Yunnan, Sichuan, Guizhou and Guangxi provinces, which span locations from the inner part of the igneous province to several hundred kilometres beyond its margins. The results show that eruptions began in the Jinogondolella altudaensis Zone ( 263 Ma) of the Middle Capitanian Stage and greatly increased in extent and volume in the J. xuanhanensis Zone ( 262 Ma). Pre-eruption uplift was muted, and most locations within the terrain and at many locations beyond its margins witnessed platform collapse (not uplift) with deep-water facies (radiolarian cherts, submarine fans) developing in the J. altudaensis Zone. The clearest evidence for an emergence surface occurs around the margins of the province in the J. xuanhanensis Zone. This is after the initial onset of eruptions and marks either a eustatic sequence boundary or a brief pulse of tectonic uplift contemporaneous with volcanism. As with recent studies on the basal volcanic successions of the Emeishan LIP, kilometre-scale plume-related domal uplift prior to Emeishan eruptions is not supported by these data; rather a more complex interaction between plume and lithosphere with minor localized uplift and subsidence is inferred

    Monitoring Level Fluctuations of the Lakes in the Yangtze River Basin from Radar Altimetry

    Full text link
    Water level variations in four natural lakes, Poyang, Dongting, Tai, and Chao, within the Yangtze River basin are studied using ENVISAT GDRs. The GDRs were edited using simple editing criteria and appropriate geophysical corrections applied. Altimeter-derived lake level variation time series were then generated and analyzed. The results of this study, which is the first of its kind in using data from ENVISAT missions over the Yangtze River basin in China, reveal that the water level changes in these four lakes directly reflect the water level of the Yangtze River and contribute to the floods and their associated disasters that usually occur in the middle and lower reaches of the Yangtze River

    Thermal properties and kinetic analysis of pyrolysis products of nicotine salts from e-cigarettes using pyrolysis-gas chromatography/mass spectrometry

    Get PDF
    Volatile organic chemicals (VOCs) released from e-cigarettes are a special source of air pollutants. In this work, we investigated the VOCs released from six nicotine salts (namely, nicotine benzoate, nicotine tartrate, nicotine citrate, nicotine malate, nicotine lactate, and nicotine levulinate) that are commonly used in e-cigarettes. The pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and thermogravimetric methods were used to analyze the thermogravimetric characteristics and product release behavior of different nicotine salts. Moreover, the kinetic models and thermodynamic parameters of nicotine salts during the thermal decomposition process were obtained. Thermogravimetric characteristic parameters of six nicotine salts showed significant differences. By the use of Py-GC/MS, our data showed that the pyrolysis products of nicotine salts were mainly from nicotine, acid anhydrides, carboxylic acids, and N-heterocycles, while more than 90% of the nicotine of citrate, tartrate, and malate was transferred to smoke. The result revealed that activation energies of the nicotine salts range from 21.26 to 74.10 kJ mol-1, indicating that the pyrolysis of the nicotine salts is a non-spontaneous heat absorption process, and the organic acid was the key factor affecting the release of nicotine into the ambient air

    The impact of cognitive training on cerebral white matter in community-dwelling elderly : one-year prospective longitudinal diffusion tensor imaging study

    Get PDF
    It has been shown that cognitive training (CogTr) is effective and recuperative for older adults, and can be used to fight against cognitive decline. In this study, we investigated whether behavioural gains from CogTr would extend to white matter (WM) microstructure, and whether training-induced changes in WM integrity would be associated with improvements in cognitive function, using diffusion tensor imaging (DTI). 48 healthy community elderly were either assigned to multi-domain or single-domain CogTr groups to receive 24 sessions over 12 weeks, or to a control group. DTI was performed at both baseline and 12-month follow-up. Positive effects of multi-domain CogTr on long-term changes in DTI indices were found in posterior parietal WM. Participants in the multi-domain group showed a trend of long-term decrease in axial diffusivity (AD) without significant change in fractional anisotropy (FA), mean diffusivity (MD) or radial diffusivity (RD), while those in the control group displayed a significant FA decrease, and an increase in MD and RD. In addition, significant relationships between an improvement in processing speed and changes in RD, MD and AD were found in the multi-domain group. These findings support the hypothesis that plasticity of WM can be modified by CogTr, even in late adulthood

    Retinal Nerve Fiber Layer Thinning Is Associated With Brain Atrophy: A Longitudinal Study in Nondemented Older Adults

    Get PDF
    Backgrounds: Abnormal retinal nerve fiber layer (RNFL) thickness has been observed in patients with Alzheimer’s disease (AD) and therefore suggested to be a potential biomarker of AD. However, whether the changes in RNFL thickness are associated with the atrophy of brain structure volumes remains unknown. We, therefore, set out a prospective investigation to determine the association between longitudinal changes of RNFL thickness and brain atrophy in nondemented older participants over a period of 12 months.Materials and Methods: We measured the RNFL thickness using optical coherence tomography (OCT) and brain structure volumes by 3T magnetic resonance imaging (MRI) before and after 12 months. Cognitive function was assessed using the Chinese version of Mini-Mental State Examination (CMMSE) and Repeatable Battery for the Assessment of Neurological Status. Associations among the changes of RNFL, brain structures and cognitive function were analyzed with Spearman correlation and multiple linear regression models adjusting for the confounding factors.Results: Fifty old participants were screened and 40 participants (mean age 71.8 ± 3.9 years, 60% were male) were enrolled at baseline. Among them, 28 participants completed the follow-up assessments. The average reduction of RNFL thickness was inversely associated with the decrease of central cingulate cortex volume after the adjustment of age and total intracranial volume (ÎČ = −0.41, P = 0.039). Specifically, the reduction of RNFL thickness in the inferior, not other quadrants, was independently associated with the decline of central cingulate cortex volume after the adjustment (ÎČ = −0.52, P = 0.006). Moreover, RNFL thinning, central cingulate cortex atrophy and the aggregation of white matter hyperintensities (WMH) were found associated with episodic memory in these older adults with normal cognition.Conclusions: RNFL thinning was associated with cingulate cortex atrophy and episodic memory decline in old participants. The longitudinal changes of RNFL thickness are suggested to be a useful complementary index of neurocognitive aging or neurodegeneration
    • 

    corecore