1,139 research outputs found

    Caffeamide 36-13 Regulates the Antidiabetic and Hypolipidemic Signs of High-Fat-Fed Mice on Glucose Transporter 4, AMPK Phosphorylation, and Regulated Hepatic Glucose Production

    Get PDF
    This study was to investigate the antidiabetic and antihyperlipidemic effects of (E)-3-[3, 4-dihydroxyphenyl-1-(piperidin-1-yl)prop-2-en-1-one] (36-13) (TS), one of caffeic acid amide derivatives, on high-fat (HF-) fed mice. The C57BL/6J mice were randomly divided into the control (CON) group and the experimental group, which was firstly fed a HF diet for 8 weeks. Then, the HF group was subdivided into four groups and was given TS orally (including two doses) or rosiglitazone (Rosi) or vehicle for 4 weeks. Blood, skeletal muscle, and tissues were examined by measuring glycaemia and dyslipidemia-associated events. TS effectively prevented HF diet-induced increases in the levels of blood glucose, triglyceride, insulin, leptin, and free fatty acid (FFA) and weights of visceral fa; moreover, adipocytes in the visceral depots showed a reduction in size. TS treatment significantly increased the protein contents of glucose transporter 4 (GLUT4) in skeletal muscle; TS also significantly enhanced Akt phosphorylation in liver, whereas it reduced the expressions of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Moreover, TS enhanced phosphorylation of AMP-activated protein kinase (phospho-AMPK) both in skeletal muscle and liver tissue. Therefore, it is possible that the activation of AMPK by TS resulted in enhanced glucose uptake in skeletal muscle, contrasting with diminished gluconeogenesis in liver. TS exhibits hypolipidemic effect by decreasing the expressions of fatty acid synthase (FAS). Thus, antidiabetic properties of TS occurred as a result of decreased hepatic glucose production by PEPCK and G6Pase downregulation and improved insulin sensitization. Thus, amelioration of diabetic and dyslipidemic state by TS in HF-fed mice occurred by regulation of GLUT4, G6Pase, and FAS and phosphorylation of AMPK

    Antcin K, a Triterpenoid Compound from Antrodia camphorata

    Get PDF
    The purpose of this study was to screen firstly the potential effects of antcin K (AnK), the main constituent of the fruiting body of Antrodia camphorata, in vitro and further evaluate the activities and mechanisms in high-fat-diet- (HFD-) induced mice. Following 8-week HFD-induction, mice were treated with AnK, fenofibrate (Feno), metformin (Metf), or vehicle for 4 weeks afterward. In C2C12 myotube cells, the membrane GLUT4 and phospho-Akt expressions were higher in insulin and AnK-treated groups than in the control group. It was observed that AnK-treated mice significantly lowered blood glucose, triglyceride, total cholesterol, and leptin levels in AnK-treated groups. Of interest, AnK at 40 mg/kg/day dosage displayed both antihyperglycemic effect comparable to Metf (300 mg/kg/day) and antihypertriglyceridemic effect comparable to Feno (250 mg/kg/day). The combination of significantly increased skeletal muscular membrane expression levels of glucose transporter 4 (GLUT4) but decreased hepatic glucose-6-phosphatase (G6 Pase) mRNA levels by AnK thus contributed to a decrease in blood glucose levels. Furthermore, AnK enhanced phosphorylation of AMP-activated protein kinase (phospho-AMPK) expressions in the muscle and liver. Moreover, AnK treatment exhibited inhibition of hepatic fatty acid synthase (FAS) but enhancement of fatty acid oxidation peroxisome proliferator-activated receptor α (PPARα) expression coincident with reduced sterol response element binding protein-1c (SREBP-1c) mRNA levels in the liver may contribute to decreased plasma triglycerides, hepatic steatosis, and total cholesterol levels. The present findings indicate that AnK displays an advantageous therapeutic potential for the management of type 2 diabetes and hyperlipidemia
    • …
    corecore