4,344 research outputs found

    Interpretable Convolutional Neural Networks

    Full text link
    This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.Comment: In this version, we release the website of the code. Compared to the previous version, we have corrected all values of location instability in Table 3--6 by dividing the values by sqrt(2), i.e., a=a/sqrt(2). Such revisions do NOT decrease the significance of the superior performance of our method, because we make the same correction to location-instability values of all baseline

    Mining Object Parts from CNNs via Active Question-Answering

    Full text link
    Given a convolutional neural network (CNN) that is pre-trained for object classification, this paper proposes to use active question-answering to semanticize neural patterns in conv-layers of the CNN and mine part concepts. For each part concept, we mine neural patterns in the pre-trained CNN, which are related to the target part, and use these patterns to construct an And-Or graph (AOG) to represent a four-layer semantic hierarchy of the part. As an interpretable model, the AOG associates different CNN units with different explicit object parts. We use an active human-computer communication to incrementally grow such an AOG on the pre-trained CNN as follows. We allow the computer to actively identify objects, whose neural patterns cannot be explained by the current AOG. Then, the computer asks human about the unexplained objects, and uses the answers to automatically discover certain CNN patterns corresponding to the missing knowledge. We incrementally grow the AOG to encode new knowledge discovered during the active-learning process. In experiments, our method exhibits high learning efficiency. Our method uses about 1/6-1/3 of the part annotations for training, but achieves similar or better part-localization performance than fast-RCNN methods.Comment: Published in CVPR 201

    Preparation and Evaluation of Intravaginal Ring Containing Drospirenone

    Get PDF
    In the present study, we investigated the feasibility of the vaginal administration of drospirenone silicone IVR. The in vitro release characteristics of matrix-type and reservoir-type IVR were compared under sink conditions in 21 days. At the same time, API excipients compatibility and preformulation study was performed by HPLC, IR, and DSC methods. Biocompatibility of reservoir system was evaluated by tolerability on tissue level in rats. It was found that, under strong light exposure, high temperature, and high humidity conditions, drospirenone and excipients had no significant interactions. The daily release of reservoir-type IVR was about 0.5 mg/d sustaining 21 days, which significantly decreased the burst effect compared with the matrix system. When drospirenone was modified by the PVPk30 in the reservoir system formulation, the daily release rate increased to 1.0 mg/d sustaining 21 days. The cumulative release of reservoir-type IVR was fitted to zero release equation. In addition, biocompatibility of drospirenone IVR system in this dosage is safe. It is feasibility feasibile to further developed for safe, convenient, and effective contraceptive drug delivery with reduced dosing interval

    Electrical transport across metal/two-dimensional carbon junctions: Edge versus side contacts

    Full text link
    Metal/two-dimensional carbon junctions are characterized by using a nanoprobe in an ultrahigh vacuum environment. Significant differences were found in bias voltage (V) dependence of differential conductance (dI/dV) between edge- and side-contact; the former exhibits a clear linear relationship (i.e., dI/dV \propto V), whereas the latter is characterized by a nonlinear dependence, dI/dV \propto V3/2. Theoretical calculations confirm the experimental results, which are due to the robust two-dimensional nature of the carbon materials under study. Our work demonstrates the importance of contact geometry in graphene-based electronic devices
    corecore