1,086 research outputs found

    A Wideband Printed Directional Antenna Array with Impedance Regulating Load

    Get PDF
    We proposed a broadband directional antenna array working at mobile communication frequency band, which achieves a relative bandwidth of 50.7%. This binary antenna array is fed by two branches of the balanced microstrip. To enhance the antenna bandwidth, we introduced a section of loading metal strip. The antenna prototype has a S11 lower than −10 dB within the 1.5 GHz to 2.52 GHz frequency band, particularly from 2.01 GHz to 2.50 GHz, the S11 is lower than −15 dB. The gain varies with relatively small variation within the working band, which is 5.4 dBi to 8.7 dBi

    Development of a deep learning-based tool to assist wound classification

    Full text link
    This paper presents a deep learning-based wound classification tool that can assist medical personnel in non-wound care specialization to classify five key wound conditions, namely deep wound, infected wound, arterial wound, venous wound, and pressure wound, given color images captured using readily available cameras. The accuracy of the classification is vital for appropriate wound management. The proposed wound classification method adopts a multi-task deep learning framework that leverages the relationships among the five key wound conditions for a unified wound classification architecture. With differences in Cohen's kappa coefficients as the metrics to compare our proposed model with humans, the performance of our model was better or non-inferior to those of all human medical personnel. Our convolutional neural network-based model is the first to classify five tasks of deep, infected, arterial, venous, and pressure wounds simultaneously with good accuracy. The proposed model is compact and matches or exceeds the performance of human doctors and nurses. Medical personnel who do not specialize in wound care can potentially benefit from an app equipped with the proposed deep learning model

    Long-term results of intensity-modulated radiotherapy concomitant with chemotherapy for hypopharyngeal carcinoma aimed at laryngeal preservation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this retrospective study is to investigate laryngeal preservation and long-term treatment results in hypopharyngeal carcinoma treated with intensity-modulated radiotherapy (IMRT) combined with chemotherapy.</p> <p>Methods</p> <p>Twenty-seven patients with hypopharyngeal carcinoma (stage II-IV) were enrolled and underwent concurrent chemoradiotherapy. The chemotherapy regimens were monthly cisplatin and 5-fluorouracil for six patients and weekly cisplatin for 19 patients. All patients were treated with IMRT with simultaneous integrated boost technique. Acute and late toxicities were recorded based on CTCAE 3.0 (Common Terminology Criteria for Adverse Events).</p> <p>Results</p> <p>The median follow-up time for survivors was 53.0 months (range 36-82 months). The initial complete response rate was 85.2%, with a laryngeal preservation rate of 63.0%. The 5-year functional laryngeal, local-regional control, disease-free and overall survival rates were 59.7%, 63.3%, 51.0% and 34.8%, respectively. The most common greater than or equal to grade 3 acute and late effects were dysphagia (63.0%, 17 of 27 patients) and laryngeal stricture (18.5%, 5 of 27 patients), respectively. Patients belonging to the high risk group showed significantly higher risk of tracheostomy compared to the low risk group (p = 0.014).</p> <p>Conclusions</p> <p>After long-term follow-up, our results confirmed that patients with hypopharyngeal carcinoma treated with IMRT concurrent with platinum-based chemotherapy attain high functional laryngeal and local-regional control survival rates. However, the late effect of laryngeal stricture remains a problem, particularly for high risk group patients.</p

    Structural insights into the electron/proton transfer pathways in the quinol : fumarate reductase from Desulfovibrio gigas

    Get PDF
    Guan, H., Hsieh, Y., Lin, P. et al. Structural insights into the electron/proton transfer pathways in the quinol : fumarate reductase from Desulfovibrio gigas. Sci Rep 8, 14935 (2018) doi:10.1038/s41598-018-33193-

    Structural insights into the electron/proton transfer pathways in the quinol:fumarate reductase from Desulfovibrio gigas

    Get PDF
    The membrane-embedded quinol:fumarate reductase (QFR) in anaerobic bacteria catalyzes the reduction of fumarate to succinate by quinol in the anaerobic respiratory chain. The electron/proton-transfer pathways in QFRs remain controversial. Here we report the crystal structure of QFR from the anaerobic sulphate-reducing bacterium Desulfovibrio gigas (D. gigas) at 3.6 Å resolution. The structure of the D. gigas QFR is a homo-dimer, each protomer comprising two hydrophilic subunits, A and B, and one transmembrane subunit C, together with six redox cofactors including two b-hemes. One menaquinone molecule is bound near heme b_L in the hydrophobic subunit C. This location of the menaquinone-binding site differs from the menaquinol-binding cavity proposed previously for QFR from Wolinella succinogenes. The observed bound menaquinone might serve as an additional redox cofactor to mediate the proton-coupled electron transport across the membrane. Armed with these structural insights, we propose electron/proton-transfer pathways in the quinol reduction of fumarate to succinate in the D. gigas QFR

    A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III

    Full text link
    We established a method on measuring the \dzdzb mixing parameter yy for BESIII experiment at the BEPCII e+e−e^+e^- collider. In this method, the doubly tagged ψ(3770)→D0D0‾\psi(3770) \to D^0 \overline{D^0} events, with one DD decays to CP-eigenstates and the other DD decays semileptonically, are used to reconstruct the signals. Since this analysis requires good e/πe/\pi separation, a likelihood approach, which combines the dE/dxdE/dx, time of flight and the electromagnetic shower detectors information, is used for particle identification. We estimate the sensitivity of the measurement of yy to be 0.007 based on a 20fb−120fb^{-1} fully simulated MC sample.Comment: 6 pages, 7 figure

    Structural insights into the electron/proton transfer pathways in the quinol : fumarate reductase from Desulfovibrio gigas

    Get PDF
    The membrane-embedded quinol: fumarate reductase (QFR) in anaerobic bacteria catalyzes the reduction of fumarate to succinate by quinol in the anaerobic respiratory chain. The electron/protontransfer pathways in QFRs remain controversial. Here we report the crystal structure of QFR from the anaerobic sulphate-reducing bacterium Desulfovibrio gigas (D. gigas) at 3.6 Ã… resolution. The structure of the D. gigas QFR is a homo-dimer, each protomer comprising two hydrophilic subunits, A and B, and one transmembrane subunit C, together with six redox cofactors including two b-hemes. One menaquinone molecule is bound near heme bL in the hydrophobic subunit C. This location of the menaquinone-binding site differs from the menaquinol-binding cavity proposed previously for QFR from Wolinella succinogenes. The observed bound menaquinone might serve as an additional redox cofactor to mediate the proton-coupled electron transport across the membrane. Armed with these structuralinsights, we propose electron/proton-transfer pathways in the quinol reduction of fumarate to succinate in the D. gigas QFR.Guan, H., Hsieh, Y., Lin, P. et al. Structural insights into the electron/proton transfer pathways in the quinol : fumarate reductase from Desulfovibrio gigas. Sci Rep 8, 14935 (2018) doi:10.1038/s41598-018-33193-

    Apoptotic Effects of Genistein, Biochanin-A and Apigenin on LNCaP and PC-3 Cells by p21 through Transcriptional Inhibition of Polo-like Kinase-1

    Get PDF
    Natural isoflavones and flavones are important dietary factors for prostate cancer prevention. We investigated the molecular mechanism of these compounds (genistein, biochanin-A and apigenin) in PC-3 (hormone-independent/p53 mutant type) and LNCaP (hormone-dependent/p53 wild type) prostate cancer cells. A cell growth rate and apoptotic activities were analyzed in different concentrations and exposure time to evaluate the antitumor activities of genistein, biochanin-A and apigenin. The real time PCR and Western blot analysis were performed to investigate whether the molecular mechanism of these compounds are involving the p21 and PLK-1 pathway. Apoptosis of prostate cancer cells was associated with p21 up-regulation and PLK-1 suppression. Exposure of genistein, biochanin-A and apigenin on LNCaP and PC-3 prostate cancer cells resulted in same pattern of cell cycle arrest and apoptosis. The inhibition effect for cell proliferation was slightly greater in LNCaP than PC-3 cells. In conclusion, flavonoids treatment induces up-regulation of p21 expression, and p21 inhibits transcription of PLK-1, which promotes apoptosis of cancer cells
    • …
    corecore