12,202 research outputs found
Helical damping and anomalous critical non-Hermitian skin effect
Non-Hermitian skin effect and critical skin effect are unique features of
non-Hermitian systems. In this Letter, we study an open system with its
dynamics of single-particle correlation function effectively dominated by a
non-Hermitian damping matrix, which exhibits skin effect, and
uncover the existence of a novel phenomenon of helical damping. When adding
perturbations that break anomalous time reversal symmetry to the system, the
critical skin effect occurs, which causes the disappearance of the helical
damping in the thermodynamic limit although it can exist in small size systems.
We also demonstrate the existence of anomalous critical skin effect when we
couple two identical systems with skin effect. With the help of
non-Bloch band theory, we unveil that the change of generalized Brillouin zone
equation is the necessary condition of critical skin effect.Comment: 7+5 pages, 4+5 figure
Fractal model and Lattice Boltzmann Method for Characterization of Non-Darcy Flow in Rough Fractures.
The irregular morphology of single rock fracture significantly influences subsurface fluid flow and gives rise to a complex and unsteady flow state that typically cannot be appropriately described using simple laws. Yet the fluid flow in rough fractures of underground rock is poorly understood. Here we present a numerical method and experimental measurements to probe the effect of fracture roughness on the properties of fluid flow in fractured rock. We develop a series of fracture models with various degrees of roughness characterized by fractal dimensions that are based on the Weierstrass-Mandelbrot fractal function. The Lattice Boltzmann Method (LBM), a discrete numerical algorithm, is employed for characterizing the complex unsteady non-Darcy flow through the single rough fractures and validated by experimental observations under the same conditions. Comparison indicates that the LBM effectively characterizes the unsteady non-Darcy flow in single rough fractures. Our LBM model predicts experimental measurements of unsteady fluid flow through single rough fractures with great satisfactory, but significant deviation is obtained from the conventional cubic law, showing the superiority of LBM models of single rough fractures
Localization and Mobility Gap in Topological Anderson Insulator
It has been proposed that disorder may lead to a new type of topological
insulator, called topological Anderson insulator (TAI). Here we examine the
physical origin of this phenomenon. We calculate the topological invariants and
density of states of disordered model in a super-cell of 2-dimensional
HgTe/CdTe quantum well. The topologically non-trivial phase is triggered by a
band touching as the disorder strength increases. The TAI is protected by a
mobility gap, in contrast to the band gap in conventional quantum spin Hall
systems. The mobility gap in the TAI consists of a cluster of non-trivial
subgaps separated by almost flat and localized bands.Comment: 8 pages, 7 figure
- …