6,032 research outputs found
On Two-Pair Two-Way Relay Channel with an Intermittently Available Relay
When multiple users share the same resource for physical layer cooperation
such as relay terminals in their vicinities, this shared resource may not be
always available for every user, and it is critical for transmitting terminals
to know whether other users have access to that common resource in order to
better utilize it. Failing to learn this critical piece of information may
cause severe issues in the design of such cooperative systems. In this paper,
we address this problem by investigating a two-pair two-way relay channel with
an intermittently available relay. In the model, each pair of users need to
exchange their messages within their own pair via the shared relay. The shared
relay, however, is only intermittently available for the users to access. The
accessing activities of different pairs of users are governed by independent
Bernoulli random processes. Our main contribution is the characterization of
the capacity region to within a bounded gap in a symmetric setting, for both
delayed and instantaneous state information at transmitters. An interesting
observation is that the bottleneck for information flow is the quality of state
information (delayed or instantaneous) available at the relay, not those at the
end users. To the best of our knowledge, our work is the first result regarding
how the shared intermittent relay should cooperate with multiple pairs of users
in such a two-way cooperative network.Comment: extended version of ISIT 2015 pape
Integrated high quality factor lithium niobate microdisk resonators
Lithium Niobate (LN) is an important nonlinear optical material. Here we
demonstrate LN microdisk resonators that feature optical quality factor ~
100,000, realized using robust and scalable fabrication techniques, that
operate over a wide wavelength range spanning visible and near infrared. Using
our resonators, and leveraging LN's large second order optical nonlinearity, we
demonstrate on-chip second harmonic generation with a conversion efficiency of
0.109 W-1
Bounds of Efficiency at Maximum Power for Normal-, Sub- and Super-Dissipative Carnot-Like Heat Engines
The Carnot-like heat engines are classified into three types (normal-, sub-
and super-dissipative) according to relations between the minimum irreversible
entropy production in the "isothermal" processes and the time for completing
those processes. The efficiencies at maximum power of normal-, sub- and
super-dissipative Carnot-like heat engines are proved to be bounded between
and , and , 0 and
, respectively. These bounds are also shared by linear, sub-
and super-linear irreversible Carnot-like engines [Tu and Wang, Europhys. Lett.
98, 40001 (2012)] although the dissipative engines and the irreversible ones
are inequivalent to each other.Comment: 1 figur
Validation of the Action Research Arm Test using item response theory in patients after stroke
Objective: To validate the unidimensionality of the Action Research Arm Test (ARAT) using Mokken analysis and to examine whether scores of the ARAT can be transformed into interval scores using Rasch analysis. Subjects and methods: A total of 351 patients with stroke were recruited from 5 rehabilitation departments located in 4 regions of Taiwan. The 19-item ARAT was administered to all the subjects by a physical therapist. The data were analysed using item response theory by non-parametric Mokken analysis followed by Rasch analysis. Results: The results supported a unidimensional scale of the 19-item ARAT by Mokken analysis, with the scalability coefficient H = 0.95. Except for the item pinch ball bearing 3rd finger and thumb'', the remaining 18 items have a consistently hierarchical order along the upper extremity function's continuum. In contrast, the Rasch analysis, with a stepwise deletion of misfit items, showed that only 4 items (grasp ball'', grasp block 5 cm(3)'', grasp block 2.5 cm(3)'', and grip tube 1 cm(3)'') fit the Rasch rating scale model's expectations. Conclusion: Our findings indicated that the 19-item ARAT constituted a unidimensional construct measuring upper extremity function in stroke patients. However, the results did not support the premise that the raw sum scores of the ARAT can be transformed into interval Rasch scores. Thus, the raw sum scores of the ARAT can provide information only about order of patients on their upper extremity functional abilities, but not represent each patient's exact functioning
Clinical pattern of liver injury in drug reaction with eosinophilia and systemic symptoms (DRESS): a retrospective study in Taiwan
Susceptibility of Human Embryonic Stem Cell-Derived Neural Cells to Japanese Encephalitis Virus Infection
Pluripotent human embryonic stem cells (hESCs) can be efficiently directed to become immature neuroepithelial precursor cells (NPCs) and functional mature neural cells, including neurotransmitter-secreting neurons and glial cells. Investigating the susceptibility of these hESCs-derived neural cells to neurotrophic viruses, such as Japanese encephalitis virus (JEV), provides insight into the viral cell tropism in the infected human brain. We demonstrate that hESC-derived NPCs are highly vulnerable to JEV infection at a low multiplicity of infection (MOI). In addition, glial fibrillary acid protein (GFAP)-expressing glial cells are also susceptible to JEV infection. In contrast, only a few mature neurons were infected at MOI 10 or higher on the third day post-infection. In addition, functional neurotransmitter-secreting neurons are also resistant to JEV infection at high MOI. Moreover, we discover that vimentin intermediate filament, reported as a putative neurovirulent JEV receptor, is highly expressed in NPCs and glial cells, but not mature neurons. These results indicate that the expression of vimentin in neural cells correlates to the cell tropism of JEV. Finally, we further demonstrate that membranous vimentin is necessary for the susceptibility of hESC-derived NPCs to JEV infection
- …
