4,806 research outputs found

    The Birth sign library

    Get PDF
    None provided

    Systematic analysis of the incoming quark energy loss in cold nuclear matter

    Get PDF
    The investigation into the fast parton energy loss in cold nuclear matter is crucial for a good understanding of the parton propagation in hot-dense medium. By means of four typical sets of nuclear parton distributions and three parametrizations of quark energy loss, the parameter values in quark energy loss expressions are determined from a leading order statistical analysis of the existing experimental data on nuclear Drell-Yan differential cross section ratio as a function of the quark momentum fraction. It is found that with independence on the nuclear modification of parton distributions, the available experimental data from lower incident beam energy rule out the incident-parton momentum fraction quark energy loss. Whether the quark energy loss is linear or quadratic with the path length is not discriminated. The global fit of all selected data gives the quark energy loss per unit path length {\alpha} = 1.21\pm0.09 GeV/fm by using nuclear parton distribution functions determined only by means of the world data on nuclear structure function. Our result does not support the theoretical prediction: the energy loss of an outgoing quark is three times larger than that of an incoming quark approaching the nuclear medium. It is desirable that the present work can provide useful reference for the Fermilab E906/SeaQuest experiment

    Cooling mechanical resonators to quantum ground state from room temperature

    Full text link
    Ground-state cooling of mesoscopic mechanical resonators is a fundamental requirement for test of quantum theory and for implementation of quantum information. We analyze the cavity optomechanical cooling limits in the intermediate coupling regime, where the light-enhanced optomechanical coupling strength is comparable with the cavity decay rate. It is found that in this regime the cooling breaks through the limits in both the strong and weak coupling regimes. The lowest cooling limit is derived analytically at the optimal conditions of cavity decay rate and coupling strength. In essence, cooling to the quantum ground state requires Qm>2.4nthQ_{\mathrm{m}}>2.4n_{\mathrm{th}% }, with QmQ_{\mathrm{m}} being the mechanical quality factor and nthn_{\mathrm{th}} being the thermal phonon number. Remarkably, ground-state cooling is achievable starting from room temperature, when mechanical QQ-frequency product QmΞ½>1.5Γ—1013Q_{\mathrm{m}}{\nu>1.5}\times10^{13}, and both of the cavity decay rate and the coupling strength exceed the thermal decoherence rate. Our study provides a general framework for optimizing the backaction cooling of mesoscopic mechanical resonators

    Edge Roman domination on graphs

    Full text link
    An edge Roman dominating function of a graph GG is a function f ⁣:E(G)β†’{0,1,2}f\colon E(G) \rightarrow \{0,1,2\} satisfying the condition that every edge ee with f(e)=0f(e)=0 is adjacent to some edge eβ€²e' with f(eβ€²)=2f(e')=2. The edge Roman domination number of GG, denoted by Ξ³Rβ€²(G)\gamma'_R(G), is the minimum weight w(f)=βˆ‘e∈E(G)f(e)w(f) = \sum_{e\in E(G)} f(e) of an edge Roman dominating function ff of GG. This paper disproves a conjecture of Akbari, Ehsani, Ghajar, Jalaly Khalilabadi and Sadeghian Sadeghabad stating that if GG is a graph of maximum degree Ξ”\Delta on nn vertices, then Ξ³Rβ€²(G)β‰€βŒˆΞ”Ξ”+1nβŒ‰\gamma_R'(G) \le \lceil \frac{\Delta}{\Delta+1} n \rceil. While the counterexamples having the edge Roman domination numbers 2Ξ”βˆ’22Ξ”βˆ’1n\frac{2\Delta-2}{2\Delta-1} n, we prove that 2Ξ”βˆ’22Ξ”βˆ’1n+22Ξ”βˆ’1\frac{2\Delta-2}{2\Delta-1} n + \frac{2}{2\Delta-1} is an upper bound for connected graphs. Furthermore, we provide an upper bound for the edge Roman domination number of kk-degenerate graphs, which generalizes results of Akbari, Ehsani, Ghajar, Jalaly Khalilabadi and Sadeghian Sadeghabad. We also prove a sharp upper bound for subcubic graphs. In addition, we prove that the edge Roman domination numbers of planar graphs on nn vertices is at most 67n\frac{6}{7}n, which confirms a conjecture of Akbari and Qajar. We also show an upper bound for graphs of girth at least five that is 2-cell embeddable in surfaces of small genus. Finally, we prove an upper bound for graphs that do not contain K2,3K_{2,3} as a subdivision, which generalizes a result of Akbari and Qajar on outerplanar graphs

    Spin alignment of vector meson in e+e- annihilation at Z0 pole

    Full text link
    We calculate the spin density matrix of the vector meson produced in e+e- annihilation at Z^0 pole. We show that the data imply a significant polarization for the antiquark which is created in the fragmentation process of the polarized initial quark and combines with the fragmenting quark to form the vector meson. The direction of polarization is opposite to that of the fragmenting quark and the magnitude is of the order of 0.5. A qualitative explanation of this result based on the LUND string fragmentation model is given.Comment: 15 pages, 2 fgiures; submitted to Phys. Rev.
    • …
    corecore