1,407 research outputs found

    On Two-Pair Two-Way Relay Channel with an Intermittently Available Relay

    Full text link
    When multiple users share the same resource for physical layer cooperation such as relay terminals in their vicinities, this shared resource may not be always available for every user, and it is critical for transmitting terminals to know whether other users have access to that common resource in order to better utilize it. Failing to learn this critical piece of information may cause severe issues in the design of such cooperative systems. In this paper, we address this problem by investigating a two-pair two-way relay channel with an intermittently available relay. In the model, each pair of users need to exchange their messages within their own pair via the shared relay. The shared relay, however, is only intermittently available for the users to access. The accessing activities of different pairs of users are governed by independent Bernoulli random processes. Our main contribution is the characterization of the capacity region to within a bounded gap in a symmetric setting, for both delayed and instantaneous state information at transmitters. An interesting observation is that the bottleneck for information flow is the quality of state information (delayed or instantaneous) available at the relay, not those at the end users. To the best of our knowledge, our work is the first result regarding how the shared intermittent relay should cooperate with multiple pairs of users in such a two-way cooperative network.Comment: extended version of ISIT 2015 pape

    Modeling of polyethylene, poly(l-lactide), and CNT composites: a dissipative particle dynamics study

    Get PDF
    Dissipative particle dynamics (DPD), a mesoscopic simulation approach, is used to investigate the effect of volume fraction of polyethylene (PE) and poly(l-lactide) (PLLA) on the structural property of the immiscible PE/PLLA/carbon nanotube in a system. In this work, the interaction parameter in DPD simulation, related to the Flory-Huggins interaction parameter χ, is estimated by the calculation of mixing energy for each pair of components in molecular dynamics simulation. Volume fraction and mixing methods clearly affect the equilibrated structure. Even if the volume fraction is different, micro-structures are similar when the equilibrated structures are different. Unlike the blend system, where no relationship exists between the micro-structure and the equilibrated structure, in the di-block copolymer system, the micro-structure and equilibrated structure have specific relationships

    Diffusion Model-Augmented Behavioral Cloning

    Full text link
    Imitation learning addresses the challenge of learning by observing an expert's demonstrations without access to reward signals from environments. Most existing imitation learning methods that do not require interacting with environments either model the expert distribution as the conditional probability p(a|s) (e.g., behavioral cloning, BC) or the joint probability p(s, a) (e.g., implicit behavioral cloning). Despite its simplicity, modeling the conditional probability with BC usually struggles with generalization. While modeling the joint probability can lead to improved generalization performance, the inference procedure can be time-consuming and it often suffers from manifold overfitting. This work proposes an imitation learning framework that benefits from modeling both the conditional and joint probability of the expert distribution. Our proposed diffusion model-augmented behavioral cloning (DBC) employs a diffusion model trained to model expert behaviors and learns a policy to optimize both the BC loss (conditional) and our proposed diffusion model loss (joint). DBC outperforms baselines in various continuous control tasks in navigation, robot arm manipulation, dexterous manipulation, and locomotion. We design additional experiments to verify the limitations of modeling either the conditional probability or the joint probability of the expert distribution as well as compare different generative models
    • …
    corecore