125 research outputs found

    Screening Quality Evaluation Factors of Freeze-Dried Peach ( Prunus Persica

    Get PDF
    The quality evaluation of processed products is complex. To simplify the quality evaluation process and improve the efficiency, fourteen evaluation factors of freeze-dried powders of seventeen cultivars of peach at different ripening times were analyzed. The most important evaluation indicators and criteria were obtained by analysis of variance (ANOVA), correlation analysis (CA), principal component analysis (PCA), system cluster analysis (SCA), and analytic hierarchy process (AHP). Results showed that the peach powders had the significant differences in quality (P<0.05), and some processing factors were related with some physicochemical and nutritional factors. Five principle components were extracted by PCA and the cumulative contribution achieved was 84.46%. Through the score plot of the first two principal components, a clear differentiation among ripening times was found and three distinct groups were separated according to ripening time. Five characteristic factors were obtained as titratable acid, browning index, hemicellulose, hygroscopicity, and vitamin C by SCA. Their weights of 0.1249, 0.3007, 0.0514, 0.4916, and 0.0315 were obtained by AHP, respectively. The peach cultivars were divided into four evaluation grades by the comprehensive quality score

    Effect modification of environmental factors on influenza-associated mortality: a time-series study in two Chinese cities

    Get PDF
    Background: Environmental factors have been associated with transmission and survival of influenza viruses but no studies have ever explored the role of environmental factors on severity of influenza infection.Methods: We applied a Poisson regression model to the mortality data of two Chinese metropolitan cities located within the subtropical zone, to calculate the influenza associated excess mortality risks during the periods with different levels of temperature and humidity.Results: The results showed that high absolute humidity (measured by vapor pressure) was significantly (p < 0.05) associated with increased risks of all-cause and cardiorespiratory deaths, but not with increased risks of pneumonia and influenza deaths. The association between absolute humidity and mortality risks was found consistent among the two cities. An increasing pattern of influenza associated mortality risks was also found across the strata of low to high relative humidity, but the results were less consistent for temperature.Conclusions: These findings highlight the need for people with chronic cardiovascular and respiratory diseases to take extra caution against influenza during hot and humid days in the subtropics and tropics. © 2011 Yang et al; licensee BioMed Central Ltd.published_or_final_versio

    Malaria incidence from 2005–2013 and its associations with meteorological factors in Guangdong, China

    Get PDF
    Background: The temporal variation of malaria incidence has been linked to meteorological factors in many studies, but key factors observed and corresponding effect estimates were not consistent. Furthermore, the potential effect modification by individual characteristics is not well documented. This study intends to examine the delayed effects of meteorological factors and the sub-population's susceptibility in Guangdong, China. Methods: The Granger causality Wald test and Spearman correlation analysis were employed to select climatic variables influencing malaria. The distributed lag non-linear model (DLNM) was used to estimate the non-linear and delayed effects of weekly temperature, duration of sunshine, and precipitation on the weekly number of malaria cases after controlling for other confounders. Stratified analyses were conducted to identify the sub-population's susceptibility to meteorological effects by malaria type, gender, and age group. Results: An incidence rate of 1.1 cases per 1,000,000 people was detected in Guangdong from 2005-2013. High temperature was associated with an observed increase in malaria incidence, with the effect lasting for four weeks and a maximum relative risk (RR) of 1.57 (95% confidence interval (CI): 1.06-2.33) by comparing 30°C to the median temperature. The effect of sunshine duration peaked at lag five and the maximum RR was 1.36 (95% CI: 1.08-1.72) by comparing 24 hours/week to 0 hours/week. A J-shaped relationship was found between malaria incidence and precipitation with a threshold of 150 mm/week. Over the threshold, precipitation increased malaria incidence after four weeks with the effect lasting for 15 weeks, and the maximum RR of 1.55 (95% CI: 1.18-2.03) occurring at lag eight by comparing 225 mm/week to 0 mm/week. Plasmodium falciparum was more sensitive to temperature and precipitation than Plasmodium vivax. Females had a higher susceptibility to the effects of sunshine and precipitation, and children and the elderly were more sensitive to the change of temperature, sunshine duration, and precipitation. Conclusion: Temperature, duration of sunshine and precipitation played important roles in malaria incidence with effects delayed and varied across lags. Climatic effects were distinct among sub-groups. This study provided helpful information for predicting malaria incidence and developing the future warning system.School of Nursin

    Cardiovascular mortality risk attributable to ambient temperature in China.

    Get PDF
    OBJECTIVE: To examine cardiovascular disease (CVD) mortality burden attributable to ambient temperature; to estimate effect modification of this burden by gender, age and education level. METHODS: We obtained daily data on temperature and CVD mortality from 15 Chinese megacities during 2007-2013, including 1,936,116 CVD deaths. A quasi-Poisson regression combined with a distributed lag non-linear model was used to estimate the temperature-mortality association for each city. Then, a multivariate meta-analysis was used to derive the overall effect estimates of temperature at the national level. Attributable fraction of deaths were calculated for cold and heat (ie, temperature below and above minimum-mortality temperatures, MMTs), respectively. The MMT was defined as the specific temperature associated to the lowest mortality risk. RESULTS: The MMT varied from the 70th percentile to the 99th percentile of temperature in 15 cities, centring at 78 at the national level. In total, 17.1% (95% empirical CI 14.4% to 19.1%) of CVD mortality (330,352 deaths) was attributable to ambient temperature, with substantial differences among cities, from 10.1% in Shanghai to 23.7% in Guangzhou. Most of the attributable deaths were due to cold, with a fraction of 15.8% (13.1% to 17.9%) corresponding to 305,902 deaths, compared with 1.3% (1.0% to 1.6%) and 24,450 deaths for heat. CONCLUSIONS: This study emphasises how cold weather is responsible for most part of the temperature-related CVD death burden. Our results may have important implications for the development of policies to reduce CVD mortality from extreme temperatures

    Maximizing temporal quantum correlation by approaching an exceptional point

    Full text link
    Quantum correlations, both spatial and temporal, are the central pillars of quantum mechanics. Over the last two decades, a big breakthrough in quantum physics is its complex extension to the non-Hermitian realm, and dizzying varieties of novel phenomena and applications beyond the Hermitian framework have been uncovered. However, unique features of non-Hermitian quantum correlations, especially in the time domain, still remain to be explored. Here, for the first time, we experimentally achieve this goal by using a parity-time (PT )-symmetric trapped-ion system. The upper limit of temporal quantum correlations, known as the algebraic bound, which has so far not been achieved in the standard measurement scenario, is reached here by approaching the exceptional point (EP), thus showing the unexpected ability of EPs in tuning temporal quantum correlation effects. Our study, unveiling the fundamental interplay of non-Hermiticity, nonlinearity, and temporal quantum correlations, provides the first step towards exploring and utilizing various non-Hermitian temporal quantum effects by operating a wide range of EP devices, which are important for both fundamental studies and applications of quantum EP systems.Comment: 4 figures and 8 page

    The Effects of Air Pollution on Mortality in Socially Deprived Urban Areas in Hong Kong, China

    Get PDF
    Background: Poverty is a major determinant of population health, but little is known about its role in modifying air pollution effects. Objectives: We set out to examine whether people residing in socially deprived communities are at higher mortality risk from ambient air pollution. Methods: This study included 209 tertiary planning units (TPUs), the smallest units for town planning in the Special Administrative Region of Hong Kong, China. The socioeconomic status of each TPU was measured by a social deprivation index (SDI) derived from the proportions of the population with a) unemployment, b) monthly household income < US$250, c) no schooling at all, d) one-person household, e) never-married status, and f) subtenancy, from the 2001 Population Census. TPUs were classified into three levels of SDI: low, middle, and high. We performed time-series analysis with Poisson regression to examine the association between changes in daily concentrations of ambient air pollution and daily number of deaths in each SDI group for the period from January 1996 to December 2002. We evaluated the differences in pollution effects between different SDI groups using a case-only approach with logistic regression. Results: We found significant associations of nitrogen dioxide, sulfur dioxide, particulate matter with aerodynamic diameter < 10 μm, and ozone with all nonaccidental and cardiovascular mortality in areas of middle or high SDI (p < 0.05). Health outcomes, measured as all nonaccidental, cardiovascular, and respiratory mortality, in people residing in high SDI areas were more strongly associated with SO 2 and NO 2 compared with those in middle or low SDI areas. Conclusions: Neighborhood socioeconomic deprivation increases mortality risks associated with air pollution.published_or_final_versio

    Seasonal effects of influenza on mortality in a subtropical city

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Influenza has been associated with a heavy burden of mortality. In tropical or subtropical regions where influenza viruses circulate in the community most of the year, it is possible that there are seasonal variations in the effects of influenza on mortality, because of periodic changes in environment and host factors as well as the frequent emergence of new antigenically drifted virus strains. In this paper we explored this seasonal effect of influenza.</p> <p>Methods</p> <p>A time-varying coefficient Poisson regression model was fitted to the weekly numbers of mortality of Hong Kong from 1996 to 2002. Excess risks associated with influenza were calculated to assess the seasonal effects of influenza.</p> <p>Results</p> <p>We demonstrated that the effects of influenza were higher in winter and late spring/early summer than other seasons. The two-peak pattern of seasonal effects of influenza was found for cardio-respiratory disease and sub-categories pneumonia and influenza, chronic obstructive pulmonary disease, cerebrovascular diseases and ischemic heart disease as well as for all-cause deaths.</p> <p>Conclusion</p> <p>The results provide insight into the possibility that seasonal factors may have impact on virulence of influenza besides their effects on virus transmission. The results warrant further studies into the mechanisms behind the seasonal effect of influenza.</p
    corecore