6,083 research outputs found

    Active-IRS Aided Wireless Network: System Modeling and Performance Analysis

    Full text link
    Active intelligent reflecting surface (IRS) enables flexible signal reflection control with \emph{power amplification}, thus effectively compensating the product-distance path-loss in conventional passive-IRS aided systems. In this letter, we characterize the communication performance of an active-IRS aided single-cell wireless network. To this end, we first propose a \emph{customized} IRS deployment strategy, where the active IRSs are uniformly deployed within a ring concentric with the cell to serve the users far from the base station. Next, given the Nakagami-mm fading channel, we characterize the cascaded active-IRS channel by using the \emph{mixture Gamma distribution} approximation and derive a closed-form expression for the mean signal-to-noise ratio (SNR) at the user averaged over channel fading. Moreover, we numerically show that to maximize the system performance, it is necessary to choose a proper active-IRS density given a fixed number of total reflecting elements, which significantly differs from the passive-IRS case for which the centralized IRS deployment scheme is better. Furthermore, the active-IRS aided wireless network achieves higher spatial throughput than the passive-IRS counterpart when the total number of reflecting elements is small

    Quantum correlation and classical correlation dynamics in the spin-boson model

    Full text link
    We study the quantum correlation and classical correlation dynamics in a spin-boson model. For two different forms of spectral density, we obtain analytical results and show that the evolutions of both correlations depend closely on the form of the initial state. At the end of evolution, all correlations initially stored in the spin system transfer to reservoirs. It is found that for a large family of initial states, quantum correlation remains equal to the classical correlation during the course of evolution. In addition, there is no increase in the correlations during the course of evolution.Comment: 10 pages, 5 figure

    Optimization of Multiple Active Ion Doped Fiber Amplifiers for Three Communication Windows

    Get PDF
    We present for the first time a theoretical model of Er 3+ -Tm 3+ -Pr 3+ codoped fiber pumped with both 800 nm and 980 nm lasers to explore possibility of this co-doped system as all-wave fiber amplifier. The rate and power propagation equations of the model are solved numerically and the dependence of the gains at 1310, 1470, 1530, 1600, 1650 nm windows on fiber length is calculated. The results show that with pump power of 200 mW/200 mW, when the concentrations of Pr 3+ , Tm 3+ , Er 3+ are around 1.7 × 10 24 , 3.9 × 10 24 , 1.2 × 10 24 (ions/m 3 ), respectively, the signals at 1310, 1470, 1530, 1600, 1650 nm may be nearly equally amplified with gain of 13-16.0 dB in the active fiber with length of 23.5 m; the co-doping concentrations and fiber length and pump powers may be further optimized to reduce the ripple

    Observation of Majorana fermions with spin selective Andreev reflection in the vortex of topological superconductor

    Get PDF
    Majorana fermion (MF) whose antiparticle is itself has been predicted in condensed matter systems. Signatures of the MFs have been reported as zero energy modes in various systems. More definitive evidences are highly desired to verify the existence of the MF. Very recently, theory has predicted MFs to induce spin selective Andreev reflection (SSAR), a novel magnetic property which can be used to detect the MFs. Here we report the first observation of the SSAR from MFs inside vortices in Bi2Te3/NbSe2 hetero-structure, in which topological superconductivity was previously established. By using spin-polarized scanning tunneling microscopy/spectroscopy (STM/STS), we show that the zero-bias peak of the tunneling differential conductance at the vortex center is substantially higher when the tip polarization and the external magnetic field are parallel than anti-parallel to each other. Such strong spin dependence of the tunneling is absent away from the vortex center, or in a conventional superconductor. The observed spin dependent tunneling effect is a direct evidence for the SSAR from MFs, fully consistent with theoretical analyses. Our work provides definitive evidences of MFs and will stimulate the MFs research on their novel physical properties, hence a step towards their statistics and application in quantum computing.Comment: 4 figures 15 page

    3-(1,3-Dithio­lan-2-yl­idene)-1-(4-meth­oxy­phen­yl)pyridine-2,4(1H,3H)-dione

    Get PDF
    In the title compound, C15H13NO3S2, the dithiol­ane ring adopts a twisted conformation. The mol­ecule exhibits a V-shaped conformation, with a dihedral angle of 79.05 (7)° between the benzene ring and the pyridine ring. In the crystal, C—H⋯O inter­actions are observed
    corecore