1,723 research outputs found

    Revisiting the Ω(2012)\Omega(2012) as a hadronic molecule and its strong decays

    Full text link
    Recently, the Belle collaboration measured the ratios of the branching fractions of the newly observed Ω(2012)\Omega(2012) excited state. They did not observe significant signals for the Ω(2012)KˉΞ(1530)KˉπΞ\Omega(2012) \to \bar{K} \Xi^*(1530) \to \bar{K} \pi \Xi decay, and reported an upper limit for the ratio of the three body decay to the two body decay mode of Ω(2012)KˉΞ\Omega(2012) \to \bar{K} \Xi. In this work, we revisit the newly observed Ω(2012)\Omega(2012) from the molecular perspective where this resonance appears to be a dynamically generated state with spin-parity 3/23/2^- from the coupled channels interactions of the KˉΞ(1530)\bar{K} \Xi^*(1530) and ηΩ\eta \Omega in ss-wave and KˉΞ\bar{K} \Xi in dd-wave. With the model parameters for the dd-wave interaction, we show that the ratio of these decay fractions reported recently by the Belle collaboration can be easily accommodated.Comment: Published version. Published in Eur.\ Phys.\ J.\ C {\bf 80}, 361 (2020

    A New Role for the CYT-18 N-Terminus and Three-Dimensional DNA Crystals as Vehicles for Biocatalysis

    Get PDF
    The bifunctional Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (N. crassa mt TyrRS; CYT-18 protein) promotes the splicing of multiple group I introns by stabilizing the catalytically active intron structures. CYT-18, and mt TyrRS's from related fungal species, have evolved to promote group I intron splicing partly by accumulation of three N-terminal domain insertions that create a structure-stabilizing scaffold for critical tertiary interactions between the two major group I intron domains. The primarily alpha-helical N-terminal insertion, H0, contributes to protein stability and is necessary for splicing the N. crassa ND1 intron, but is dispensable for splicing the N. crassa mt LSU intron. Herein, I show CYT-18 with a complete H0 deletion retains residual ND1 intron splicing activity and addition of the missing N-terminus in trans restores a significant portion of its splicing activity. This peptide complementation assay revealed important characteristics of the CYT-18/group I intron interaction including the stoichiometry of H0 in intron splicing and the importance of specific H0 residues. Evaluation of truncated H0 peptides in this assay also suggests a previously unknown structural role of the first five N-terminal residues of CYT-18. These residues interact directly with another splicing insertion, making H0 a central structural element responsible for connecting all three N-terminal splicing insertions. Transitioning to a separate study, I have demonstrated that enzymes retain catalytic activity when captured in the solvent channels of three-dimensional (3D) DNA crystals. Using RNase A as a model enzyme system this work shows that crystals infused with enzyme can cleave a fluorescent dinucleotide substrate with similar kinetic restrictions as other immobilized enzyme systems, mainly limited by diffusion of substrate. This new vehicle for immobilized enzymes, created entirely from biomolecules, provides a platform for developing modular solid-state catalysts that could be both biocompatible and biodegradable

    The Performance Optimization of Rolling Piston Compressors Based on CFD Simulation

    Get PDF

    4-Methyl-N-[(Z)-3-(4-methyl­phen­ylsulfon­yl)-1,3-thia­zolidin-2-yl­idene]benzene­sulfonamide

    Get PDF
    In the crystal structure of the title compound, C17H18N2O4S3, mol­ecules are connected into centrosymmetric dimers via weak inter­molecular C—H⋯π inter­actions. These dimers are further connected through a series of weak C—H⋯O hydrogen bonds, while futher C—H⋯π inter­actions involving the phenyl and thia­zoline rings are also observed. The thia­zolidine ring is twisted from the benzene rings rings by dihedral angles of 79.1 (1) and 85.0 (1)°, while the dihedral angle between two benzene rings is 76.0 (1)°
    corecore