34 research outputs found
Application of Mine Micro-Seismic Monitoring System on Preventing Against Illegal Mining
AbstractThe establishment and application of the Mine Micro-seismic Monitoring System (MMS), provides a powerful method not only to monitor and predict the mine geological hazard, but also to monitor and prevent against the illegal mining. While there was illegal mining, the system can give you the information including the 3-dimensional spatial coordinates in real time.. The monitoring against the illegal mining was aimed at the blast events, so the blast events should be collected and analyzed specially. On the other hand, the energy of the blast events are larger enough to be easily recognized and be 3-d located and then be analyzed by the MMS, and then the satisfied information can be given by the MMS. This kind of usage of the system has been analyzed and confirmed by a practical example
Study on Preliminarily Estimating Performance of Elementary Deep Underground Engineering Structures in Future Large-Scale Heat Mining Projects
Geothermal energy will become an important part of energy in the future because of its advantages in source stability, sustainability, and potential high utilization ratio. In particular, the development and utilization of deep geothermal energy from HDR have gradually attracted people’s attention. Aiming at solution to the bottleneck of EGS-D, a new EGS-E based on excavation technology is proposed. In this paper, a concise and direct method for estimating the early performance of this disruptive and innovative geothermal development scheme is established as a viable alternative to supercomputing for the subsequent quantitative research of the corresponding relationship between a typical deep engineering structure and its heat extraction efficiency. Firstly, the effects of the fixed temperature at a tunnel wall, the radius of a tunnel, and the rock type on the annual heat extraction rate of the tunnel are studied based on the analytical solution of a one-dimensional radial plane problem of the transient heat conduction through high-temperature surrounding rock to the tunnel wall covering 30 years. Then, three different estimation methods of EGS-E efficiency with comb-shaped and chessboard-shaped underground tunnels, respectively, are studied, and the research ideas for the estimation of the EGS-E system with more complicated cobweb-shaped tunnels are pointed out
Research on Zonal Disintegration Characteristics and Failure Mechanisms of Deep Tunnel in Jointed Rock Mass with Strength Reduction Method
To understand the fracture features of zonal disintegration and reveal the failure mechanisms of circle tunnels excavated in deep jointed rock masses, a series of three-dimensional heterogeneous models considering varying joint dip angles are established. The strength reduction method is embedded in the RFPA method to achieve the gradual fracture process, macro failure mode and safety factor, and to reproduce the characteristic fracture phenomenon of deep rock masses, i.e., zonal disintegration. The mechanical mechanisms and acoustic emission energy of surrounding rocks during the different stages of the whole formation process of zonal disintegration affected by different-dip-angle joints and randomly distributed joints are further discussed. The results demonstrate that the zonal disintegration process is induced by the stress redistribution, which is significantly different from the formation mechanism of traditional surrounding rock loose zone; the dip angle of joint set has a great influence on the stress buildup, stress shadow and stress transfer as well as the failure mode of surrounding rock mass; the existence of parallel and random joints lead the newly formed cracks near the tunnel surface to developing along their strikes; the random joints make the zonal disintegration pattern much more complex and affected by the regional joint composition. These will greatly improve our understanding of the zonal disintegration in deep engineering
Modelling a Novel Scheme of Mining Geothermal Energy from Hot Dry Rocks
On the basis of a conceptual model for an Excavation based Enhanced Geothermal System (EGS-E), which proposed to extract heat from Hot Dry Rock at depth through dominantly adopting shaft, roadways, and caved rock failure techniques but not depending on either wellbore drilling or fracturing stimulation, a novel extensive version of heat extraction is proposed in this paper. Considering its mechanical stability issues, the new scheme contains two fields apart away: the ones are near-field by piping flow to touch the tunnel wall; the others are far-field through filling and driving fluid within the voids of collapsed rock. The former is represented as a tunnel unit being installed hollow linear, which can extract and produce heat precisely according to structural design and accurate operative prediction. The latter is represented as interconnective fissures being induced by stope excavation due to gravitational weight and unloading of a deep-buried squeeze. The EGS-E uses a two-stage heat exchange system of “fluid-rock” and “fluid-fluid.” Then, a 3D transient thermal-hydraulic model is established to demonstrate the heat extraction performance. The temperature field and accumulated heat energy are investigated. The modeling work provides a tentative workflow to simulate an EGS-E system and, most probably for the first time, demonstrated that the deep underground Hot Dry Rock heat mining turns out to be preliminarily studied in a quantitative way
Origin and Evolution of Cracks in the Glaze Surface of a Ceramic during the Cooling Process
Because of the significant difference between the thermal expansion coefficients of ceramic blank and glaze, the glaze typically undergoes more pronounced shrinkage than the blank during ceramic cooling, which results in high stress concentrations and cracking. In this study, the mechanical mechanism of glaze cracking is studied, based on the statistical strength theory, damage mechanics, and continuum mechanics. Furthermore, the influence of the glaze layer thickness, heat transfer coefficient, expansion coefficient, and temperature difference on the creation and propagation of inner microcracks is systematically investigated, and the final discrete fracture network of ceramics is discussed at the specific crack saturation state. The results show that (1) a higher heat transfer coefficient will lead to a more uniform distribution of the surface temperature and a faster cooling process of the ceramics, reducing the number of microcracks when the ambient temperature is reached; (2) the thinner glaze layer is less prone to cracking when its thickness is smaller than that of the blank. However, when the thickness of the glaze layer is similar to that of the blank, the increased thickness of the glaze layer will increase the number of cracks on its surface; and (3) when the expansion coefficient of the glaze layer is smaller than that of the blank, cracks will not occur inside the glaze layer. However, as the coefficient of the thermal expansion of the glaze layer continuously rises, the number of cracks on its surface will first increase and then decrease
Research on the Design of Coal Mine Microseismic Monitoring Network Based on Improved Particle Swarm Optimization
The quality of a mine’s microseismic network layout directly affects the location accuracy of the microseismic network. Introducing the microseismic probability factor Fe, the microseismic importance factor FQ, and the effective range factor FV, an improved particle swarm algorithm with bacterial foraging algorithm is proposed to optimize the mine’s microseismic network layout and evaluation system based on the D-value optimization design theory. Through numerical simulation experiments, it is found that the system has the advantages of fast optimization speed and good network layout effect. Combined with the system application at Xiashijie Coal Mine in Tongchuan City, Shaanxi Province, the method in this paper successfully optimizes the layout of the 20-channel network, ensuring that the positioning error of key monitoring areas is controlled within 20 m, and the minimum measurable magnitude can reach −3.26. Finally, it is verified by blasting tests that the maximum spatial positioning accuracy of the site is within 12.2 m, and the positioning capability of the site network is more accurately evaluated. The relevant research can provide a reference for the layout of the microseismic monitoring network for similar projects
Roles of Normal Stress, Roughness, and Slip Displacement in the Stability of Laboratory Fault in a Sandstone
Unstable slip of a fault block is considered to be the main cause of shallow earthquakes. However, the underlying mechanism of the stability-to-instability transition of faults has not been fully understood. Here, we used the stiffness ratio, which is the ratio between the shear stiffness of the fault subjected to direct shear and the critical stiffness to evaluate the fault stability degree from stable to unstable slip, and examined the effects of normal stress, roughness, and slip displacement on the fault stability. Our experimental results show that with the increase in slip displacement, the shear stiffness change in stable slip mainly includes four stages, namely “rapid increase–keep unchanged–slow increase–rapid decrease”, and unstable slip tends to occur in the last two stages. This process of shear stiffness change is accelerated by the increase in normal stress and the decrease in fault roughness. Our study reveals that fault stability over slip is mutually dictated by asperity interlocking and wear-induced gouge. Asperity interlocking controls fault stability when the gouge amount is low, whereas the fault gouge prevails with the increased wear of the fault surface since the gouge generated during slip can participate in the subsequent friction process. Thus, we infer that the stable–unstable transition of fault over slip is a spontaneous process due to the interplay of asperity interlocking and wear-induced gouge lubrication