4 research outputs found

    A 0.53pJK27000μm2resistor-based temperature sensor with an inaccuracy of ±0.35°C (3σ) in 65nm CMOS

    No full text
    In microprocessors and DRAMs, on-chip temperature sensors are essential components, ensuring reliability by monitoring thermal gradients and hot spots. Such sensors must be as small as possible, since multiple sensors are required for dense thermal monitoring. However, conventional BJT-based temperature sensors are not compatible with the sub-1V supply of advanced processes. Subthreshold MOSFETs can operate from lower supplies, but at high temperatures their performance is limited by leakage [1,2]. Thermal diffusivity (TD) sensors achieve sub-1V operation and small area with moderate accuracy, but require milliwatts of power [3]. Recently, resistor-based sensors based on RC WienBridge (WB) filters have realized high resolution and energy efficiency [4,5]. Fundamentally, they are robust to process and supply-voltage scaling. However, their readout circuitry has been based on continuous-time (CT) ΔΣ ADCs or frequency-locked loops (FLLs), which require precision analog circuits and occupy considerable area (>0.7mm 2 ).Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Microelectronic

    A Compact Resistor-Based CMOS Temperature Sensor With an Inaccuracy of 0.12 °C (3σ) and a Resolution FoM of 0.43 pJ·K² in 65-nm CMOS

    No full text
    This paper presents a compact resistor-based CMOS temperature sensor intended for dense thermal monitoring. It is based on an RC poly-phase filter (PPF), whose temperature-dependent phase shift is read out by a frequency-locked loop (FLL). The PPF's phase shift is determined by a zero-crossing (ZC) detector, allowing the rest of the FLL to be realized in an area-efficient manner. Implemented in a 65-nm CMOS technology, the sensor occupies only 7000 μm². It can operate from supply voltages as low as 0.85 V and consumes 68 μW. A sensor based on a PPF made from silicided p-poly resistors and metal-insulator-metal (MIM) capacitors achieves an inaccuracy of ±0.12 °C (3σ) from -40 °C to 85 °C and a resolution of 2.5 mK (rms) in a 1-ms conversion time. This corresponds to a resolution figure-of-merit (FoM) of 0.43 pJ·K².Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Microelectronic

    Global DNA Methylation in the Chestnut Blight Fungus Cryphonectria parasitica and Genome-Wide Changes in DNA Methylation Accompanied with Sectorization

    No full text
    Mutation in CpBck1, an ortholog of the cell wall integrity mitogen-activated protein kinase kinase kinase (MAPKKK) of Saccharomyces cerevisiae, in the chestnut blight fungus Cryphonectria parasitica resulted in a sporadic sectorization as culture proceeded. The progeny from the sectored area maintained the characteristics of the sector, showing a massive morphogenetic change, including robust mycelial growth without differentiation. Epigenetic changes were investigated as the genetic mechanism underlying this sectorization. Quantification of DNA methylation and whole-genome bisulfite sequencing revealed genome-wide DNA methylation of the wild-type at each nucleotide level and changes in DNA methylation of the sectored progeny. Compared to the wild-type, the sectored progeny exhibited marked genome-wide DNA hypomethylation but increased methylation sites. Expression analysis of two DNA methyltransferases, including two representative types of DNA methyltransferase (DNMTase), demonstrated that both were significantly down-regulated in the sectored progeny. However, functional analysis using mutant phenotypes of corresponding DNMTases demonstrated that a mutant of CpDmt1, an ortholog of RID of Neurospora crassa, resulted in the sectored phenotype but the CpDmt2 mutant did not, suggesting that the genetic basis of fungal sectorization is more complex. The present study revealed that a mutation in a signaling pathway component resulted in sectorization accompanied with changes in genome-wide DNA methylation, which suggests that this signal transduction pathway is important for epigenetic control of sectorization via regulation of genes involved in DNA methylation
    corecore