15 research outputs found
Minimum spanning tree analysis for epilepsy magnetoencephalography (MEG) data
Aim: Recently, brain network research is actively conducted through the application of graph theory. However, comparison between brain networks is subject to bias issues due to topological characteristics and heterogeneity across subjects. The minimum spanning tree (MST) is a method that is increasingly applied to overcome the thresholding problem. In this study, the aim is to use the MST analysis in comparing epilepsy patients and controls to find the differences between groups. Methods: The MST combines entities for epileptic magnetoencephalography (MEG) data. The MST was applied and compared to 21 left surgery (LT) and 21 right surgery (RT) patients with epilepsy and good postoperative prognosis and a healthy control (HC) group. MST metrics such as betweenness centrality, eccentricity, diameter, and leaf fraction, are computed and compared to describe the integration and efficiency of the network. The MST analysis is applied to each subject, and then the integrated MST is obtained using the distance concept. This approach can be advantageous when comparing the topological structure of patients to controls with the same number of nodes. Results: The HC group showed less topological change and more network efficiency than the epilepsy LT and RT groups. In addition, the posterior cingulate gyrus was found as a hub node only in the patient group in individual and integrated subject data analysis. Conclusions: This study suggests propose that the hippocampus borrows from the default network when one side fails, compensating for the weakened function
Mechanistic Systems Modeling to Improve Understanding and Prediction of Cardiotoxicity Caused by Targeted Cancer Therapeutics
Tyrosine kinase inhibitors (TKIs) are highly potent cancer therapeutics that have been linked with serious cardiotoxicity, including left ventricular dysfunction, heart failure, and QT prolongation. TKI-induced cardiotoxicity is thought to result from interference with tyrosine kinase activity in cardiomyocytes, where these signaling pathways help to control critical processes such as survival signaling, energy homeostasis, and excitationâcontraction coupling. However, mechanistic understanding is limited at present due to the complexities of tyrosine kinase signaling, and the wide range of targets inhibited by TKIs. Here, we review the use of TKIs in cancer and the cardiotoxicities that have been reported, discuss potential mechanisms underlying cardiotoxicity, and describe recent progress in achieving a more systematic understanding of cardiotoxicity via the use of mechanistic models. In particular, we argue that future advances are likely to be enabled by studies that combine large-scale experimental measurements with Quantitative Systems Pharmacology (QSP) models describing biological mechanisms and dynamics. As such approaches have proven extremely valuable for understanding and predicting other drug toxicities, it is likely that QSP modeling can be successfully applied to cardiotoxicity induced by TKIs. We conclude by discussing a potential strategy for integrating genome-wide expression measurements with models, illustrate initial advances in applying this approach to cardiotoxicity, and describe challenges that must be overcome to truly develop a mechanistic and systematic understanding of cardiotoxicity caused by TKIs
Clinical Evaluation of Commercial Atlas-Based Auto-Segmentation in the Head and Neck Region
Background: While atlas segmentation (AS) has proven to be a time-saving and promising method for radiation therapy contouring, optimal methods for its use have not been well-established. Therefore, we investigated the relationship between the size of the atlas patient population and the atlas segmentation auto contouring (AC) performance.Methods: A total of 110 patients' head planning CT images were selected. The mandible and thyroid were selected for this study. The mandibles and thyroids of the patient population were carefully segmented by two skilled clinicians. Of the 110 patients, 100 random patients were registered to 5 different atlas libraries as atlas patients, in groups of 20 to 100, with increments of 20. AS was conducted for each of the remaining 10 patients, either by simultaneous atlas segmentation (SAS) or independent atlas segmentation (IAS). The AS duration of each target patient was recorded. To validate the accuracy of the generated contours, auto contours were compared to manually generated contours (MC) using a volume-overlap-dependent metric, Dice Similarity Coefficient (DSC), and a distance-dependent metric, Hausdorff Distance (HD).Results: In both organs, as the population increased from n = 20 to n = 60, the results showed better convergence. Generally, independent cases produced better performance than simultaneous cases. For the mandible, the best performance was achieved by n = 60 [DSC = 0.92 (0.01) and HD = 6.73 (1.31) mm] and the worst by n = 100 [DSC = 0.90 (0.03) and HD = 10.10 (6.52) mm] atlas libraries. Similar results were achieved with the thyroid; the best performance was achieved by n = 60 [DSC = 0.79 (0.06) and HD = 10.17 (2.89) mm] and the worst by n = 100 [DSC = 0.72 (0.13) and HD = 12.88 (3.94) mm] atlas libraries. Both IAS and SAS showed similar results. Manual contouring of the mandible and thyroid required an average of 1,044 (±170.15) seconds, while AS required an average of 46.4 (±2.8) seconds.Conclusions: The performance of AS AC generally increased as the population of the atlas library increased. However, the performance does not drastically vary in the larger atlas libraries in contrast to the logic that bigger atlas library should lead to better results. In fact, the results do not vary significantly toward the larger atlas library. It is necessary for the institutions to independently research the optimal number of subjects
SegRap2023: A Benchmark of Organs-at-Risk and Gross Tumor Volume Segmentation for Radiotherapy Planning of Nasopharyngeal Carcinoma
Radiation therapy is a primary and effective NasoPharyngeal Carcinoma (NPC)
treatment strategy. The precise delineation of Gross Tumor Volumes (GTVs) and
Organs-At-Risk (OARs) is crucial in radiation treatment, directly impacting
patient prognosis. Previously, the delineation of GTVs and OARs was performed
by experienced radiation oncologists. Recently, deep learning has achieved
promising results in many medical image segmentation tasks. However, for NPC
OARs and GTVs segmentation, few public datasets are available for model
development and evaluation. To alleviate this problem, the SegRap2023 challenge
was organized in conjunction with MICCAI2023 and presented a large-scale
benchmark for OAR and GTV segmentation with 400 Computed Tomography (CT) scans
from 200 NPC patients, each with a pair of pre-aligned non-contrast and
contrast-enhanced CT scans. The challenge's goal was to segment 45 OARs and 2
GTVs from the paired CT scans. In this paper, we detail the challenge and
analyze the solutions of all participants. The average Dice similarity
coefficient scores for all submissions ranged from 76.68\% to 86.70\%, and
70.42\% to 73.44\% for OARs and GTVs, respectively. We conclude that the
segmentation of large-size OARs is well-addressed, and more efforts are needed
for GTVs and small-size or thin-structure OARs. The benchmark will remain
publicly available here: https://segrap2023.grand-challenge.orgComment: A challenge report of SegRap2023 (organized in conjunction with
MICCAI2023
Deep-Learning-Based Automatic Detection and Segmentation of Brain Metastases with Small Volume for Stereotactic Ablative Radiotherapy
Recently, several efforts have been made to develop the deep learning (DL) algorithms for automatic detection and segmentation of brain metastases (BM). In this study, we developed an advanced DL model to BM detection and segmentation, especially for small-volume BM. From the institutional cancer registry, contrast-enhanced magnetic resonance images of 65 patients and 603 BM were collected to train and evaluate our DL model. Of the 65 patients, 12 patients with 58 BM were assigned to test-set for performance evaluation. Ground-truth for BM was assigned to one radiation oncologist to manually delineate BM and another one to cross-check. Unlike other previous studies, our study dealt with relatively small BM, so the area occupied by the BM in the high-resolution images were small. Our study applied training techniques such as the overlapping patch technique and 2.5-dimensional (2.5D) training to the well-known U-Net architecture to learn better in smaller BM. As a DL architecture, 2D U-Net was utilized by 2.5D training. For better efficacy and accuracy of a two-dimensional U-Net, we applied effective preprocessing include 2.5D overlapping patch technique. The sensitivity and average false positive rate were measured as detection performance, and their values were 97% and 1.25 per patient, respectively. The dice coefficient with dilation and 95% Hausdorff distance were measured as segmentation performance, and their values were 75% and 2.057 mm, respectively. Our DL model can detect and segment BM with small volume with good performance. Our model provides considerable benefit for clinicians with automatic detection and segmentation of BM for stereotactic ablative radiotherapy
Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy
Purpose: The superior soft-tissue contrast achieved using magnetic resonance imaging (MRI) compared to x-ray computed tomography (CT) has led to the popularization of MRI-guided radiation therapy (MR-IGRT), especially in recent years with the advent of first and second generation MRI-based therapy delivery systems for MR-IGRT. The expanding use of these systems is driving interest in MRI-only RT workflows in which MRI is the sole imaging modality used for treatment planning and dose calculations. To enable such a workflow, synthetic CT (sCT) data must be generated based on a patientâs MRI data so that dose calculations may be performed using the electron density information derived from CT images. In this study, we propose a novel deep spatial pyramid convolutional framework for the MRI-to-CT image-to-image translation task and compare its performance to the well established U-Net architecture in a generative adversarial network (GAN) framework. Methods: Our proposed framework utilizes atrous convolution in a method named atrous spatial pyramid pooling (ASPP) to significantly reduce the total number of parameters required to describe the model while effectively capturing rich, multi-scale structural information in a manner that is not possible in the conventional framework. The proposed framework consists of a generative model composed of stacked encoders and decoders separated by the ASPP module, where atrous convolution is applied at increasing rates in parallel to encode large-scale features. The performance of the proposed method is compared to that of the conventional GAN framework in terms of the time required to train the model and the image quality of the generated sCT as measured by the root mean square error (RMSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) depending on the size of the training data set. Dose calculations based on sCT data generated using the proposed architecture are also compared to clinical plans to evaluate the dosimetric accuracy of the method. Results: Significant reductions in training time and improvements in image quality are observed at every training data set size when the proposed framework is adopted instead of the conventional framework. Over 1042 test images, values of 17.7 ± 4.3 HU, 0.9995 ± 0.0003, and 71.7 ± 2.3 are observed for the RMSE, SSIM, and PSNR metrics, respectively. Dose distributions calculated based on sCT data generated using the proposed framework demonstrate passing rates equal to or greater than 98% using the 3D gamma index with a 2%/2 mm criterion. Conclusions: The deep spatial pyramid convolutional framework proposed here demonstrates improved performance compared to the conventional GAN framework that has been applied to the image-to-image translation task of sCT generation. Adopting the method is a first step toward an MRI-only RT workflow that enables widespread clinical applications for MR-IGRT including online adaptive therapy
Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MRâonly breast radiotherapy
Purpose: The superior soft-tissue contrast achieved using magnetic resonance imaging (MRI) compared to x-ray computed tomography (CT) has led to the popularization of MRI-guided radiation therapy (MR-IGRT), especially in recent years with the advent of first and second generation MRI-based therapy delivery systems for MR-IGRT. The expanding use of these systems is driving interest in MRI-only RT workflows in which MRI is the sole imaging modality used for treatment planning and dose calculations. To enable such a workflow, synthetic CT (sCT) data must be generated based on a patientâs MRI data so that dose calculations may be performed using the electron density information derived from CT images. In this study, we propose a novel deep spatial pyramid convolutional framework for the MRI-to-CT image-to-image translation task and compare its performance to the well established U-Net architecture in a generative adversarial network (GAN) framework. Methods: Our proposed framework utilizes atrous convolution in a method named atrous spatial pyramid pooling (ASPP) to significantly reduce the total number of parameters required to describe the model while effectively capturing rich, multi-scale structural information in a manner that is not possible in the conventional framework. The proposed framework consists of a generative model composed of stacked encoders and decoders separated by the ASPP module, where atrous convolution is applied at increasing rates in parallel to encode large-scale features. The performance of the proposed method is compared to that of the conventional GAN framework in terms of the time required to train the model and the image quality of the generated sCT as measured by the root mean square error (RMSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) depending on the size of the training data set. Dose calculations based on sCT data generated using the proposed architecture are also compared to clinical plans to evaluate the dosimetric accuracy of the method. Results: Significant reductions in training time and improvements in image quality are observed at every training data set size when the proposed framework is adopted instead of the conventional framework. Over 1042 test images, values of 17.7 ± 4.3 HU, 0.9995 ± 0.0003, and 71.7 ± 2.3 are observed for the RMSE, SSIM, and PSNR metrics, respectively. Dose distributions calculated based on sCT data generated using the proposed framework demonstrate passing rates equal to or greater than 98% using the 3D gamma index with a 2%/2 mm criterion. Conclusions: The deep spatial pyramid convolutional framework proposed here demonstrates improved performance compared to the conventional GAN framework that has been applied to the image-to-image translation task of sCT generation. Adopting the method is a first step toward an MRI-only RT workflow that enables widespread clinical applications for MR-IGRT including online adaptive therapy