45 research outputs found
Ubiquitin-dependent regulation of translesion polymerases
In response to DNA damage, TLS (translesion synthesis) allows replicative bypass of various DNA lesions, which stall normal replication. TLS is achieved by low-fidelity polymerases harbouring less stringent active sites. In humans, Y-family polymerases together with Polζ (polymerase ζ) are responsible for TLS across different types of damage. Protein-protein interaction contributes significantly to the regulation of TLS. REV1 plays a central role in TLS because it interacts with all other Y-family members and Polζ. Ubiquitin-dependent regulatory mechanisms also play important roles in TLS. Ubiquitin-binding domains have been found in TLS polymerases and they might be required for TLS activity. Mono-ubiquitination of PCNA (proliferating-cell nuclear antigen), the central scaffold of TLS polymerases, is thought to promote TLS. In addition, both non-proteolytic and proteolytic polyubiquitination of PCNA and TLS polymerases has been demonstrated. Owing to their low fidelity, the recruitment of TLS polymerases is strictly restricted to stalled replication forks. © The Authors Journal compilation.postprin
Human T-cell leukemia virus oncoprotein Tax represses nuclear receptor-dependent transcription by targeting coactivator TAX1BP1
Human T-cell leukemia virus type 1 oncoprotein Tax is a transcriptional regulator that interacts with a large number of host cell factors. Here, we report the novel characterization of the interaction of Tax with a human cell protein named Tax1-binding protein 1 (TAX1BP1). We show that TAX1BP1 is a nuclear receptor coactivator that forms a complex with the glucocorticoid receptor. TAX1BP1 and Tax colocalize into intranuclear speckles that partially overlap with but are not identical to the PML oncogenic domains. Tax binds TAX1BP1 directly, induces the dissociation of TAX1BP1 from the glucocorticoid receptor-containing protein complex, and represses the coactivator function of TAX1BP1. Genetic knockout of Tax1bp1 in mice abrogates the influence of Tax on the activation of nuclear receptors. We propose that Tax-TAX1BP1 interaction mechanistically explains the previously reported repression of nuclear receptor activity by Tax. ©2007 American Association for Cancer Research.postprin
Coiled-coil motif as a structural basis for the interaction of HTLV type 1 Tax with cellular cofactors
Human T lymphotropic virus type 1 (HTLV-1) Tax is a multifunctional protein centrally involved in transcriptional regulation, cell cycle control, and viral transformation. The regulatory functions of Tax are thought to be mediated through protein-protein interaction with cellular cofactors. Previously we have identified several novel binding partners for Tax, including human mitotic checkpoint protein MAD1 (TXBP181), G-protein pathway suppressor GPS2 (TXBP31), and IκB kinase regulatory subunit IKK-γ. Here we described two additional Tax partners, TXBP151 and TXBP121. A closer examination of the sequences of eight independent cellular Tax-binding proteins identified by us and others revealed that all of them share a single characteristic, a highly structured coiled-coil domain. We also noted that Tax and the Tax-binding coiled-coil proteins can homodimerize. Additionally, the same domain in Tax is responsible for interaction with different coiled-coil proteins. Taken together, our findings point to a particular coiled-coil structure as one of the Tax-recognition motifs. The interaction of Tax with a particular subgroup of cellular coiled-coil proteins represents one mechanism by which Tax dysregulates cell growth and proliferation.published_or_final_versio
Characterization of human and mouse peroxiredoxin IV: Evidence for inhibition by Prx-IV of epidermal growth factor- and p53-induced reactive oxygen species
The aim of this study was to identify and characterize human and mouse Prx-IV. We identified mouse peroxiredoxin IV (Prx-IV) by virtue of sequence homology to its human ortholog previously called AOE372. Mouse Prx-IV conserves an amino-terminal presequence coding for signal peptide. The amino acid sequences of mature mouse and human Prx-IV share 97.5% identity. Phylogenetic analysis demonstrates that Prx-IV is more closely related to Prx-I/-II/-III than to Prx-V/-VI. Previously, we mapped the mouse Prx-IV gene to chromosome X by analyzing two sets of multiloci genetic crosses. Here we performed further comparative analysis of mouse and human Prx-IV genomic loci. Consistent with the mouse results, human Prx-IV gene localized to chromosome Xp22.135-136, in close proximity to SAT and DXS7178. A bacterial artificial chromosome (BAC) clone containing the complete human Prx-IV locus was identified. The size of 7 exons and the sequences of the splice junctions were confirmed by PCR analysis. We conclude that mouse Prx-IV is abundantly expressed in many tissues. However, we could not detect Prx-IV in the conditioned media of NIH-3T3 and Jurkat cells. Mouse Prx-IV was specifically found in the nucleus-excluded region of cultured mouse cells. Intracellularly, overexpression of mouse Prx-IV prevented the production of reactive oxygen species induced by epidermal growth factor or p53. Taken together, mouse Prx-IV is likely a cytoplasmic or organellar peroxiredoxin involved in intracellular redox signaling.published_or_final_versio
The retroviral oncoprotein Tax targets the coiled-coil centrosomal protein TAX1BP2 to induce centrosome overduplication
Emerging evidence suggests that supernumerary centrosomes drive genome instability and oncogenesis. Human T-cell leukaemia virus type I (HTLV-I) is etiologically associated with adult T-cell leukaemia (ATL). ATL cells are aneuploid, but the causes of aneuploidy are incompletely understood. Here, we show that centrosome amplification is frequent in HTLV-I-transformed cells and that this phenotype is caused by the viral Tax oncoprotein. We also show that the fraction of Tax protein that localizes to centrosomes interacts with TAX1BP2, a novel centrosomal protein composed almost entirely of coiled-coil domains. Overexpression of TAX1BP2 inhibited centrosome duplication, whereas depletion of TAX1BP2 by RNAi resulted in centrosome hyperamplification. Our findings suggest that the HTLV-I Tax oncoprotein targets TAX1BP2 causing genomic instability and aneuploidy. © 2006 Nature Publishing Group.postprin
Tumor Suppressor Protein p53 Recruits Human Sin3B/HDAC1 Complex for Down-Regulation of Its Target Promoters in Response to Genotoxic Stress
Master regulator protein p53, popularly known as the “guardian of genome” is the hub for regulation of diverse cellular pathways. Depending on the cell type and severity of DNA damage, p53 protein mediates cell cycle arrest or apoptosis, besides activating DNA repair, which is apparently achieved by regulation of its target genes, as well as direct interaction with other proteins. p53 is known to repress target genes via multiple mechanisms one of which is via recruitment of chromatin remodelling Sin3/HDAC1/2 complex. Sin3 proteins (Sin3A and Sin3B) regulate gene expression at the chromatin-level by serving as an anchor onto which the core Sin3/HDAC complex is assembled. The Sin3/HDAC co-repressor complex can be recruited by a large number of DNA-binding transcription factors. Sin3A has been closely linked to p53 while Sin3B is considered to be a close associate of E2Fs. The theme of this study was to establish the role of Sin3B in p53-mediated gene repression. We demonstrate a direct protein-protein interaction between human p53 and Sin3B (hSin3B). Amino acids 1–399 of hSin3B protein are involved in its interaction with N-terminal region (amino acids 1–108) of p53. Genotoxic stress induced by Adriamycin treatment increases the levels of hSin3B that is recruited to the promoters of p53-target genes (HSPA8, MAD1 and CRYZ). More importantly recruitment of hSin3B and repression of the three p53-target promoters upon Adriamycin treatment were observed only in p53+/+ cell lines. Additionally an increased tri-methylation of the H3K9 residue at the promoters of HSPA8 and CRYZ was also observed following Adriamycin treatment. The present study highlights for the first time the essential role of Sin3B as an important associate of p53 in mediating the cellular responses to stress and in the transcriptional repression of genes encoding for heat shock proteins or proteins involved in regulation of cell cycle and apoptosis
Recommended from our members
Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer
Abstract: Stromal tumor-infiltrating lymphocytes (sTILs) are important prognostic and predictive biomarkers in triple-negative (TNBC) and HER2-positive breast cancer. Incorporating sTILs into clinical practice necessitates reproducible assessment. Previously developed standardized scoring guidelines have been widely embraced by the clinical and research communities. We evaluated sources of variability in sTIL assessment by pathologists in three previous sTIL ring studies. We identify common challenges and evaluate impact of discrepancies on outcome estimates in early TNBC using a newly-developed prognostic tool. Discordant sTIL assessment is driven by heterogeneity in lymphocyte distribution. Additional factors include: technical slide-related issues; scoring outside the tumor boundary; tumors with minimal assessable stroma; including lymphocytes associated with other structures; and including other inflammatory cells. Small variations in sTIL assessment modestly alter risk estimation in early TNBC but have the potential to affect treatment selection if cutpoints are employed. Scoring and averaging multiple areas, as well as use of reference images, improve consistency of sTIL evaluation. Moreover, to assist in avoiding the pitfalls identified in this analysis, we developed an educational resource available at www.tilsinbreastcancer.org/pitfalls
Recommended from our members
Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group
Funder: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)Funder: National Center for Research Resources under award number 1 C06 RR12463-01, VA Merit Review Award IBX004121A from the United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service, the DOD Prostate Cancer Idea Development Award (W81XWH-15-1-0558), the DOD Lung Cancer Investigator-Initiated Translational Research Award (W81XWH-18-1-0440), the DOD Peer Reviewed Cancer Research Program (W81XWH-16-1-0329), the Ohio Third Frontier Technology Validation Fund, the Wallace H. Coulter Foundation Program in the Department of Biomedical Engineering and the Clinical and Translational Science Award Program (CTSA) at Case Western Reserve University.Funder: Susan G Komen Foundation (CCR CCR18547966) and a Young Investigator Grant from the Breast Cancer Alliance.Funder: The Canadian Cancer SocietyFunder: Breast Cancer Research Foundation (BCRF), Grant No. 17-194Abstract: Assessment of tumor-infiltrating lymphocytes (TILs) is increasingly recognized as an integral part of the prognostic workflow in triple-negative (TNBC) and HER2-positive breast cancer, as well as many other solid tumors. This recognition has come about thanks to standardized visual reporting guidelines, which helped to reduce inter-reader variability. Now, there are ripe opportunities to employ computational methods that extract spatio-morphologic predictive features, enabling computer-aided diagnostics. We detail the benefits of computational TILs assessment, the readiness of TILs scoring for computational assessment, and outline considerations for overcoming key barriers to clinical translation in this arena. Specifically, we discuss: 1. ensuring computational workflows closely capture visual guidelines and standards; 2. challenges and thoughts standards for assessment of algorithms including training, preanalytical, analytical, and clinical validation; 3. perspectives on how to realize the potential of machine learning models and to overcome the perceptual and practical limits of visual scoring
Recommended from our members
Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials
Funder: Breast Cancer Research Foundation (BCRF); doi: https://doi.org/10.13039/100001006Abstract: Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting
Transcriptional regulation of mitotic checkpoint gene MAD1 by p53
p53 regulates a number of genes through transcriptional activation and repression. p53-dependent mitotic checkpoint has been described, but the underlying mechanism is still obscure. Here we examined the effect of p53 on the expression of a human mitotic checkpoint protein, Mitosis Arrest Deficiency 1 (MAD1), in cultured human cells. The expression of MAD1 was reduced when the cells were overexpressing exogenously introduced wild-type p53. The same reduction was also observed when the cells were treated with anticancer agents 5-fluorouracil and cisplatin or were irradiated with UV. Consistently, MAD1 promoter activity diminished in a dose-dependent manner when induced by p53, indicating that p53 repressed MAD1 at a transcriptional level. Intriguingly, several tumor hot spot mutations in p53 (V143A, R175H, R248W, and R273H) did not abolish the ability of p53 to repress MAD1 expression. By serial truncation of the MAD1 promoter, we confined the p53-responsive element to a 38-bp region that represents a novel sequence distinct from the known p53 consensus binding site. Trichostatin A, a histone deacetylase inhibitor, relieved the p53 transrepression activity on MAD1. Chromatin immunoprecipitation assay revealed that p53, histone deacetylase 1, and co-repressor mSin3a associated with the MAD1 promoter in vivo. Taken together, our findings suggest a regulatory mechanism for the mitotic checkpoint in which MAD1 is inhibited by p53.link_to_subscribed_fulltex