842 research outputs found
Competing rhombohedral and monoclinic crystal structures in Mn compounds: an {\em ab-initio} study
Based on the relativistic spin-polarized density functional theory
calculations we investigate the crystal structure, electronic and magnetic
properties of a family MnPn2Ch4 compounds, where pnictogen metal atoms (Pn) are
Sb and Bi; chalcogens (Ch) are Se, Te. We show that in the series the compounds
of this family with heavier elements prefer to adopt rhombohedral crystal
structure composed of weakly bonded septuple monoatomic layers while those with
lighter elements tend to be in the monoclinic structure. Irrespective of the
crystal structure all compounds of the MnPn2Ch4 series demonstrate a weak
energy gain (of a few meV per formula unit or even smaller than meV) for
antiferromagnetic (AFM) coupling for magnetic moments on Mn atoms with respect
to their ferromagnetic (FM) state. For rhombohedral structures the interlayer
AFM coupling is preferable while in monoclinic phases intralayer AFM
configuration with ferromagnetic ordering along the Mn chain and
antiferromagnetic ordering between the chains has a minimum energy. Over the
series the monoclinic compounds are characterized by substantially wider
bandgap than compounds with rhombohedral structure
Spin-helical Dirac states in graphene induced by polar-substrate surfaces with giant spin-orbit interaction: a new platform for spintronics
Spintronics, or spin electronics, is aimed at efficient control and
manipulation of spin degrees of freedom in electron systems. To comply with
demands of nowaday spintronics, the studies of electron systems hosting giant
spin-orbit-split electron states have become one of the most important
directions providing us with a basis for desirable spintronics devices. In
construction of such devices, it is also tempting to involve graphene, which
has attracted great attention because of its unique and remarkable electronic
properties and was recognized as a viable replacement for silicon in
electronics. In this case, a challenging goal is to make graphene Dirac states
spin-polarized. Here, we report on absolutely new promising pathway to create
spin-polarized Dirac states based on coupling of graphene and polar-substrate
surface states with giant Rashba-type spin-splitting. We demonstrate how the
spin-helical Dirac states are formed in graphene deposited on the surface of
BiTeCl. This coupling induces spin separation of the originally spin-degenerate
graphene states and results in fully helical in-plane spin polarization of the
Dirac electrons.Comment: 5 pages, 3 figure
Electron-phonon interaction at the Be(0001) surface
We present a first principle study of the electron-phonon (e-p) interaction
at the Be(0001) surface. The real and imaginary part of the e-p self energy are
calculated for the surface state in the binding energy range from the
point to the Fermi level. Our calculation shows an overall good
agreement with several photoemission data measured at high and low
temperatures. Additionally, we show that the energy derivative of real part of
the self-energy presents a strong temperature and energy variation close to
, making it difficult to measure its value just at .Comment: Accepted in Phys. Rev. Lett., 5 figure
Rashba split surface states in BiTeBr
Within density functional theory, we study bulk band structure and surface
states of BiTeBr. We consider both ordered and disordered phases which differ
in atomic order in the Te-Br sublattice. On the basis of relativistic ab-initio
calculations, we show that the ordered BiTeBr is energetically preferable as
compared with the disordered one. We demonstrate that both Te- and
Br-terminated surfaces of the ordered BiTeBr hold surface states with a giant
spin-orbit splitting. The Te-terminated surface-state spin splitting has the
Rashba-type behavior with the coupling parameter \alpha_R ~ 2 eV\AA.Comment: 8 pages, 7 figure
Many-body effects on the Rashba-type spin splitting in bulk bismuth tellurohalides
We report on many-body corrections to one-electron energy spectra of bulk
bismuth tellurohalides---materials that exhibit a giant Rashba-type spin
splitting of the band-gap edge states. We show that the corrections obtained in
the one-shot approximation noticeably modify the spin-orbit-induced spin
splitting evaluated within density functional theory. We demonstrate that
taking into account many-body effects is crucial to interpret the available
experimental data.Comment: 6 pages, 1 figur
Inelastic Decay of Electrons in the Shockley-type Metal-Organic Interface States
We present a theoretical study of lifetimes of interface states (IS) on
metal-organic interfaces PTCDA/Ag(111), NTCDA/Ag(111), PFP/Ag(111), and
PTCDA/Ag(100), describing and explaining the recent experimental data. By means
of unfolding the band structure of one of the interfaces under study onto the
Ag(111) Brillouin zone we demonstrate, that the Brillouin zone folding upon
organic monolayer deposition plays a minor role in the phase space for electron
decay, and hence weakly affects the resulting lifetimes. The presence of the
unoccupied molecular states below the IS gives a small contribution to the IS
decay rate mostly determined by the change of the phase space of bulk states
upon the energy shift of the IS. The calculated lifetimes follow the
experimentally observed trends. In particular, we explain the trend of the
unusual increase of the IS lifetimes with rising temperature.Comment: 8 pages, 5 figure
Escalation Of Commitment In MIS Projects: A Meta-Analysis
Escalation of commitment emerged as a major explanation for the propensity of management information systems projects to exceed time and budget constraints. Earlier studies demonstrated that escalation in MIS is a common event. This study presents a meta-analysis of the various theories of escalation that allows for integration of the various escalation factors into a model of irrational escalation and a model of rational escalation. The implications of rational and irrational escalation for the decision making in management of information systems are discussed
Role of bulk and surface phonons in the decay of metal surface states
We present a comprehensive theoretical investigation of the electron-phonon
contribution to the lifetime broadening of the surface states on Cu(111) and
Ag(111), in comparison with high-resolution photoemission results. The
calculations, including electron and phonon states of the bulk and the surface,
resolve the relative importance of the Rayleigh mode, being dominant for the
lifetime at small hole binding energies. Including the electron-electron
interaction, the theoretical results are in excellent agreement with the
measured binding energy and temperature dependent lifetime broadening.Comment: 4 pages, 3 figure
- …