565 research outputs found
The quasiparticle band gap in the topological insulator Bi2Te3
We present a theoretical study of dispersion of states which form the bulk
band-gap edges in the three-dimensional topological insulator Bi2Te3. Within
density functional theory, we analyze the effect of atomic positions varying
within the error range of the available experimental data and approximation
chosen for the exchange-correlation functional on the bulk band gap and k-space
location of valence- and conduction-band extrema. For each set of the positions
with different exchange-correlation functionals, we show how many-body
corrections calculated within a one-shot GW approach affect the mentioned
characteristics of electronic structure of Bi2Te3. We thus also illustrate to
what degree the one-shot GW results are sensitive to the reference one-particle
band structure in the case of bismuth telluride. We found that for this
topological insulator the GW corrections enlarge the fundamental band gap and
for certain atomic positions and reference band structure bring its value in
close agreement with experiment.Comment: 12 pages, 6 figures, 5 table
Rashba split surface states in BiTeBr
Within density functional theory, we study bulk band structure and surface
states of BiTeBr. We consider both ordered and disordered phases which differ
in atomic order in the Te-Br sublattice. On the basis of relativistic ab-initio
calculations, we show that the ordered BiTeBr is energetically preferable as
compared with the disordered one. We demonstrate that both Te- and
Br-terminated surfaces of the ordered BiTeBr hold surface states with a giant
spin-orbit splitting. The Te-terminated surface-state spin splitting has the
Rashba-type behavior with the coupling parameter \alpha_R ~ 2 eV\AA.Comment: 8 pages, 7 figure
Spin-helical Dirac states in graphene induced by polar-substrate surfaces with giant spin-orbit interaction: a new platform for spintronics
Spintronics, or spin electronics, is aimed at efficient control and
manipulation of spin degrees of freedom in electron systems. To comply with
demands of nowaday spintronics, the studies of electron systems hosting giant
spin-orbit-split electron states have become one of the most important
directions providing us with a basis for desirable spintronics devices. In
construction of such devices, it is also tempting to involve graphene, which
has attracted great attention because of its unique and remarkable electronic
properties and was recognized as a viable replacement for silicon in
electronics. In this case, a challenging goal is to make graphene Dirac states
spin-polarized. Here, we report on absolutely new promising pathway to create
spin-polarized Dirac states based on coupling of graphene and polar-substrate
surface states with giant Rashba-type spin-splitting. We demonstrate how the
spin-helical Dirac states are formed in graphene deposited on the surface of
BiTeCl. This coupling induces spin separation of the originally spin-degenerate
graphene states and results in fully helical in-plane spin polarization of the
Dirac electrons.Comment: 5 pages, 3 figure
Many-body effects on the Rashba-type spin splitting in bulk bismuth tellurohalides
We report on many-body corrections to one-electron energy spectra of bulk
bismuth tellurohalides---materials that exhibit a giant Rashba-type spin
splitting of the band-gap edge states. We show that the corrections obtained in
the one-shot approximation noticeably modify the spin-orbit-induced spin
splitting evaluated within density functional theory. We demonstrate that
taking into account many-body effects is crucial to interpret the available
experimental data.Comment: 6 pages, 1 figur
Pressure effects on crystal and electronic structure of bismuth tellurohalides
We study the possibility of pressure-induced transitions from a normal
semiconductor to a topological insulator (TI) in bismuth tellurohalides using
density functional theory and tight-binding method. In BiTeI this transition is
realized through the formation of an intermediate phase, a Weyl semimetal, that
leads to modification of surface state dispersions. In the topologically
trivial phase, the surface states exhibit a Bychkov-Rashba type dispersion. The
Weyl semimetal phase exists in a narrow pressure interval of 0.2 GPa. After the
Weyl semimetal--TI transition occurs, the surface electronic structure is
characterized by gapless states with linear dispersion. The peculiarities of
the surface states modification under pressure depend on the band-bending
effect. We have also calculated the frequencies of Raman active modes for BiTeI
in the proposed high-pressure crystal phases in order to compare them with
available experimental data. Unlike BiTeI, in BiTeBr and BiTeCl the topological
phase transition does not occur. In BiTeBr, the crystal structure changes with
pressure but the phase remains a trivial one. However, the transition appears
to be possible if the low-pressure crystal structure is retained. In BiTeCl
under pressure, the topological phase does not appear up to 18 GPa due to a
relatively large band gap width in this compound
Inelastic decay rate of quasiparticles in a two-dimensional spin-orbit coupled electron system
We present a study of the inelastic decay rate of quasiparticles in a
two-dimensional electron gas with spin-orbit interaction. The study is done
within the G0W0 approximation. The spin-orbit interaction is taken in the most
general form that includes both Rashba and Dresselhaus contributions linear in
magnitude of the electron 2D momentum. Spin-orbit interaction effect on the
inelastic decay rate is examined at different parameters characterizing the
interaction strength in the electron gas.Comment: 5 pages, 4 figure
Inelastic Decay of Electrons in the Shockley-type Metal-Organic Interface States
We present a theoretical study of lifetimes of interface states (IS) on
metal-organic interfaces PTCDA/Ag(111), NTCDA/Ag(111), PFP/Ag(111), and
PTCDA/Ag(100), describing and explaining the recent experimental data. By means
of unfolding the band structure of one of the interfaces under study onto the
Ag(111) Brillouin zone we demonstrate, that the Brillouin zone folding upon
organic monolayer deposition plays a minor role in the phase space for electron
decay, and hence weakly affects the resulting lifetimes. The presence of the
unoccupied molecular states below the IS gives a small contribution to the IS
decay rate mostly determined by the change of the phase space of bulk states
upon the energy shift of the IS. The calculated lifetimes follow the
experimentally observed trends. In particular, we explain the trend of the
unusual increase of the IS lifetimes with rising temperature.Comment: 8 pages, 5 figure
- …