4 research outputs found
Involvement of S100A8/A9-TLR4-NLRP3 Inflammasome Pathway in Contrast-Induced Acute Kidney Injury
Background: Contrast-induced acute kidney injury (CIAKI) is a common cause of hospital-acquired acute kidney injury (AKI). S100A8/A9-TLR4-NLRP3 inflammasome pathway triggers inflammation, apoptosis and tissue injury in several AKI models. Nevertheless, the underlying mechanism of S100A8/A9-TLR4-NLRP3 inflammasome pathway in CIKAI is not clear. We aimed to investigate the possible role of S100A8/A9-TLR4-NLRP3 inflammasome in the pathophysiology of CIAKI. Methods: We treated male rats and NRK-52E cells by iopromide to establish in vivo and in vitro models of CIAKI. We collected serum and urine samples to detect renal function. We obtained kidney tissue for histological analysis and detection of protein concentration. We used inhibitor of TLR4 and NLRP3-siRNA to further testify their role in CIAKI in NRK-52E cells. Results: Iopromide caused elevation of SCr, BUN and NGAL level, decrease of endogenous creatinine clearance, morphological injury and tubular apoptosis, enhanced IL-1β and IL-18 expression, and increased expression of S100A8/A9, TLR4 and NLRP3 inflammsome. In NRK-52E cells, iopromide caused enhanced apoptotic rates and ROS generation, which could be ameliorated by inhibitor of TLR4 and NLRP3-siRNA. Moreover, inhibition of TLR4 dampened NLRP3 expression. Conclusion: S100A8/A9-TLR4-NLRP3 inflammasome pathway represented a key mechanism of CI-AKI, which provided a potential therapeutic target
The genetic effects of hormones modulated by the Pituitary-Thyroid/Adrenal/Gonadal axis on the risk of developing venous thromboembolism: a mendelian randomization study
Abstract Background The aim of this study was to explore the genetic effects of hormones modulated through the pituitary-thyroid/adrenal/gonadal axis on the risk of developing venous thromboembolism (VTE) and to investigate the potentially causal relationships between them. Methods A two-sample Mendelian randomization (MR) design was used. The single-nucleotide polymorphisms (SNPs) used as instrumental variables for various hormones and hormone-mediated diseases were derived from published genome-wide association studies (GWASs). Summary statistics for the risk of developing VTE (including deep venous thrombosis [DVT] and pulmonary embolism [PE]) were obtained from the UK Biobank and the FinnGen consortium. Inverse-variance weighting (IVW) was applied as the primary method to analyse causal associations. Other MR methods were used for supplementary estimates and sensitivity analysis. Results A genetic predisposition to greater free thyroxine (FT4) concentrations was associated with a greater risk of developing DVT (OR = 1.0007, 95%CI [1.0001–1.0013], p = 0.0174) and VTE (OR = 1.0008, 95%CI [1.0002–1.0013], p = 0.0123). Genetically predicted hyperthyroidism was significantly associated with an increased risk of developing DVT (OR = 1.0685, 95%CI [1.0139–1.1261], p = 0.0134) and VTE (OR = 1.0740, 95%CI [1.0165–1.1348], p = 0.0110). According to the initial MR analysis, testosterone concentrations were positively associated with the risk of developing VTE (OR = 1.0038, 95%CI [1.004–1.0072], p = 0.0285). After sex stratification, estradiol concentrations were positively associated with the risk of developing DVT (OR = 1.0143, 95%CI [1.0020–1.0267], p = 0.0226) and VTE (OR = 1.0156, 95%CI [1.0029–1.0285], p = 0.0158) in females, while the significant relationship between testosterone and VTE did not persist. SHBG rs858518 was identified as the only SNP that was associated with an increased risk of developing VTE, mediated by estradiol, in females. Conclusions Genetically predicted hyperthyroidism and increased FT4 concentrations were positively associated with the risk of developing VTE. The effects of genetically predicted sex hormones on the risk of developing VTE differed between males and females. Greater genetically predicted estradiol concentrations were associated with an increased risk of developing VTE in females, while the SHBG rs858518 variant may become a potential prevention and treatment target for female VTE
Exogenous Hydrogen Sulfide Attenuates High Glucose-Induced Cardiotoxicity by Inhibiting NLRP3 Inflammasome Activation by Suppressing TLR4/NF-κB Pathway in H9c2 Cells
Background/Aims: This study aimed to investigate whether exogenous hydrogen sulfide (H2S) confered cardiac protection against high glucose (HG)-induced injury by inhibiting NLRP3 inflammasome activation via a specific TLR4/NF-κB pathway. Methods: H9c2 cardiac cells were exposed to 33 mM glucose for 24 h to induce HG-induced cytotoxicity. The cells were pretreated with NaHS (a donor of H2S) before exposure to HG. Cell viability, cell apoptosis, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and TLR4, NF-κB, NLRP3 inflammasome, IL-1β, IL-18 and caspase-3 expression were measured by standard methods. Results: H2S attenuated HG-induced cell apoptosis, ROS expression and loss of MMP and reduced the expression of NLRP3, ASC, pro-caspase-1, caspase-1, IL-1β, IL-18 and caspase-3. In addition, H2S inhibited the HG-induced activation of TLR4 and NF-κB. Furthermore, NLRP3 inflammasome activation was regulated by the TLR4 and NF-κB pathway. Conclusion: The present study demonstrated for the first time that H2S appears to suppress HG-induced cardiomyocyte inflammation and apoptosis by inhibiting the TLR4/NF-κB pathway and its downstream NLRP3 inflammasome activation. Thus H2S might possess potential in the treatment of diabetic cardiomyopathy